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Abstract

The workshop at the Banff International Research Station, 10w5068,

on “Statistical Issues Relevant to Significance of Discovery Claims”, raised

several interesting issues that are best illustrated with concrete examples

that participants can try out and discuss the issues that arise. Many

solutions were offered by the participants exploring several different tech-

niques to solve the problems, an all solutions are of very high quality. The

challenge datasets are designed to test these methods for data for which

the true values of the parameters remain unknown to the participants.

This document provides a brief summary of each method provided by the

participants, and details the performance of the solutions.

1 Introduction

The two problems are specified in a separate note, available at

http://www-cdf.fnal.gov/∼trj

This document describes the methods used to generate the simulated datasets,
and summarizes the entries received from participants, showing the performance
of each. Each participant was required to provide a description of the methods
used to solve the two problems, and these documents are available separately.
All of the responses to Problem 1 are grouped together, are are those for Prob-
lem 2
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2 Challenge Problem #1

2.1 Challenge Datasets

The challenge datasets were generated randomly according to the distribution
described in the challenge note:

B(x) + S(x) = Ae−Cx + De−(x−E)2/2σ2

. (1)

There are 24 different subsets of the simulated pseudoexperiments, correspond-
ing to different choices of D and E, and these are listed in Table 1. The numerical
choices were governed by the desire to have a correct-discovery rate that can
be measured accurately with a limited number of repetitions, and thus should
not be too close to 0% or 100%, and that we would like to test more than one
regime. Signals with large values of D and small values of E can presumably
be treated with a Gaussian approximation, while signals with small values of
D and large values of E are very sensitive to the Poisson nature of the data in
sparsely populated areas of the distribution.

The parameters D and E are parameters of interest and are not affected
by unknown values of nuisance parameters. This is somewhat unrealistic, since
in a real high-energy physics context physicists are usually not entirely sure of
the fraction of collisions that would trigger our detectors’ readouts and pass
our event selection requirements, although we have estimates of these numbers.
Similarly, the location of a peak does not always correspond to the true value
of the mass of a new particle, although the significance of a peak should not
be affected by the uncertainty in the relationship between the measured peak
position and the underlying process that makes events in the peak. Similarly,
the trigger and event selection acceptance uncertainty should have little impact
on the significance of a peak that is found, although they do have impacts on
the expected sensitivity, signal rate measurements, and limits.

The background parameter A was chosen for each simulated dataset from
its prior distribution, a Gaussian centered on 10000 with a width of 1000. An
integer nb was then drawn from a Poisson distribution whose mean is the total
background integral from x = 0 to 1 using the randomly selected value of A.
Then nb marks x were generated from the exponential distribution B(x). A
similar procedure was followed for generating marks for the signal component,
according to S(x). The marks were then shuffled and written out to the chal-
lenge dataset file. Simulated datasets from the 24 categories were also shuffled
so that no clue to the injected values would be provided by the ordering of either
the datasets or the marks within a dataset.

The presence of a nuisance parameter in the null and test hypotheses com-
plicates the definition of the Type-I error rate. One approach is to evaluate
the Type-I error rate as a function of the true value of the unknown nuisance
parameter(s). Another approach is to evaluate the Type-I error rate in the prior-
predictive ensemble whose generation is described above. A third is to quote the
largest Type-I error rate for a fixed range of values of the nuisance parameters.
The ideal that a method should cover for all values of the nuisance parameter
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requires a specification of what is meant by “all”. The approach here is to
quote the error rate and the correct-discovery rates using the prior-predictive
ensemble, although this is not the only valid definition. A method which has a
Type-I error rate which is larger than the stated value, which is usually written
in a high-energy physics publication as a confidence level or a significance level,
is said to undercover and is unlikely to pass collaboration review.

A feature of challenge Problems 1 and 2 is that signal rate intervals were
requested only in the case that evidence is claimed, and the problem statement
asks for zero to be entered if evidence is not claimed. These instructions reflect
a flip-flopping procedure which is very commonly used in particle physics. If a
particle physics collaboration measures the mass of a new particle but does not
claim evidence for the new particle, the result may be easily misconstrued.

Nonetheless, not quoting the measured signal yield in simulated datasets for
which evidence is not claimed biases upwards the measured signal yields and
the intervals containing them. A simple example is the null hypothesis – the
true signal rate is zero in null hypothesis simulated datasets, but in 1% of them,
a method that is performing well should claim evidence for a signal. Even if
the set of intervals for the signal rate cover properly for a method, selecting this
sample of them will in general not have proper coverage. This is true to a lesser
extent for test hypotheses with true signals present.

A final feature of Problem 1 is that at most one signal is present, at a
single value of E. In a real experiment in which the signal is a priori unknown,
there may be more than one signal present. Since most methods fit for the
background rate in the process of testing for the signal, a second signal (or
more) will change the background fit. One may legitimately ask whether all of
the events are signal events from a broad spectrum of multiple signals, and this is
where some theoretical input and auxiliary information from other experiments
is needed to constrain the background. For this problem, we treat the presence
of at most one signal as auxiliary a priori information. The challenge datasets
were generated with no more than one signal in each.

2.2 Solutions Received

Table 2 lists the contributors who provides solutions to Problem 1, the fractions
of null-hypothesis simulated datasets that resulted in a discovery claim, and the
fractions of simulated datasets that were in the power test samples that resulted
in discovery claims, compared with the estimations provided by the participants.
In high-energy physics experiments, the claimed power is quite important –
it plays a pivotal role in deciding which experiments to fund, which to give
extended running time to, and it plays a key role in individual collaborators’
decisions of which topics to pursue within a running experiment. It is vital to
be able to compute these numbers reliably, and Banff Challenge 2 is an ideal
forum in which to test these computations. Methods should have a Type-I error
rate not exceeding 1%, the specified level for this exercise.
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Table 1: Problem 1 challenge dataset categories, listing the input values of E
and D, the signal peak position and the signal rate parameters, respectively.
The first category is the null hypothesis.

Category Einput Dinput nrep

1 — 0.00 15400
2 0.50 83.78 200
3 0.38 265.96 200
4 0.10 1010.65 200
5 0.10 478.73 200
6 0.66 66.49 200
7 0.78 39.89 200
8 0.10 744.69 200
9 0.50 136.97 200
10 0.90 15.29 200
11 0.50 190.16 200
12 0.14 664.90 200
13 0.50 163.57 200
14 0.38 531.92 200
15 0.14 1196.83 200
16 0.50 110.37 200
17 0.10 1276.62 200
18 0.90 20.61 200
19 0.66 132.98 200
20 0.90 12.63 200
21 0.90 17.95 200
22 0.90 23.27 200
23 0.78 79.79 200
24 0.10 1542.58 200
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Table 2: Listing of the estimated and measured correct-discovery rates for the three scenarios of Problem 1. The SCT’s claimed
discovery rate for the third scenario is probably a typo. Stefan Schmitt states that his unbinned sensitivities are rather similar
to his binned sensitivities.

Contributor Type-I Error Rate D = 1010,E = 0.1 D = 137,E = 0.5 D = 18,E = 0.9
Measured Claimed Measured Claimed Measured Claimed Measured

Tom Junk 0.0097 ± 0.0008 0.256 0.3150 ± 0.0328 0.543 0.6100 ± 0.0345 0.108 0.1350 ± 0.0242
Wolfgang Rolke 0.0103 ± 0.0008 0.356 0.3800 ± 0.0343 0.457 0.5250 ± 0.0353 0.184 0.2150 ± 0.0290
Stanford Challenge
Team (SCT) 0.0077 ± 0.0007 0.3483 0.3550 ± 0.0338 0.4335 0.5200 ± 0.0353 0.0175 0.2100 ± 0.0288
Eilam Gross &
Ofer Vitells 0.0082 ± 0.0007 0.35 0.3600 ± 0.0339 0.46 0.5250 ± 0.0353 0.19 0.2100 ± 0.0288
Valentin Niess 0.0111 ± 0.0008 0.603 0.3250 ± 0.0331 0.87 0.5300 ± 0.0353 0.12 0.1950 ± 0.0280
Georgios
Choudalakis 0.0110 ± 0.0008 0.213 0.1600 ± 0.0259 0.290 0.3500 ± 0.0337 0.107 0.1300 ± 0.0238
Mark Allen 0.0106 ± 0.0008 0.385 0.4000 ± 0.0346 0.486 0.5250 ± 0.0353 0.187 0.2100 ± 0.0288
Frederik
Beaujean (BAT) 0.0000 ± 0.0000 0.0000 ± 0.0000 0.0300 ± 0.0121 0.0050 ± 0.0050
Stefan Schmitt
Unbinned 0.0112 ± 0.0009 0.4500 ± 0.0352 0.5450 ± 0.0352 0.1850 ± 0.0275
Binned 0.0110 ± 0.0008 0.37 0.3850 ± 0.0344 0.53 0.5450 ± 0.0352 0.17 0.2200 ± 0.0293

Stefano
Andreon
p < 3 × 10−3 0.0126 ± 0.0013 0.4811 ± 0.0485 0.4766 ± 0.0483 0.0120 ± 0.0120
p < 4 × 10−3 0.0191 ± 0.0016 0.5189 ± 0.0485 0.4766 ± 0.0483 0.0120 ± 0.0120
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2.2.1 From Tom Junk

For Challenge Problem #1, Tom Junk provided a solution based on an unbinned
profile likelihood test statistic. Two fits are done, both using MINUIT, one in
the test hypothesis, and one for the null hypothesis. Simulated datasets were
generated using the prior-predictive ensemble. The Look-Elsewhere Effect is
incorporated by testing all datasets in the same way, allowing a peak to be
found anywhere in the ranges 0 < E < 1 and 0 < D. Tom reports the values of
D and E returned by the MINUIT fit.

Table 3 lists the error rates in the challenge datasets for Tom’s solution. The
Type-I error rate is just under 1% as desired, although the confidence intervals
for the fitted signal in those datasets with a Type-I error do not contain zero
signal very often. One does not expect that, as they are 68% intervals and we
insist that only 1% of outcomes have a Type-I error.
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Table 3: Problem 1 performance evaluation for Tom Junk’s solution. The columns are Etrue, the input value of the peak
position, Dtrue, the input value of the signal rate parameter, nrep, the number of simulated datasets in the 20,000 sample
in this category, ndisc, the number of datasets on which a discovery was reported, fdisc, the fraction of datasets on which a
discovery is reported, nEcorr, the number of datasets for which a discovery was claimed and for which the true value of E falls
within the intervals supplied, fEcorr, the fraction of datasets for which the true value of E is in the interval, and similarly for
the signal intervals, nDcorr and fDcorr. The columns 〈Ewid〉 and 〈Dwid〉 indicate the average interval widths for E and D,
respectively. The uncertainties quoted are the Gaussian approximation to binomial uncertainties,

√

f(1− f)/n.

Category Etrue Dtrue nrep ndisc fdisc nEcorr fEcorr nDcorr fDcorr 〈Ewid〉 〈Dwid〉
1 — 0.00 15400 149 0.0097 ± 0.0008 — — 6 0.0403 0.0399 309.1451
2 0.50 83.78 200 33 0.1650 ± 0.0262 25 0.7576 26 0.7879 0.0413 163.1197
3 0.38 265.96 200 108 0.5400 ± 0.0352 82 0.7593 91 0.8426 0.0330 270.4944
4 0.10 1010.65 200 63 0.3150 ± 0.0328 57 0.9048 48 0.7619 0.0263 1000.3658
5 0.10 478.73 200 7 0.0350 ± 0.0130 5 0.7143 0 0.0000 0.0320 888.4238
6 0.66 66.49 200 39 0.1950 ± 0.0280 28 0.7179 35 0.8974 0.0406 117.1397
7 0.78 39.89 200 36 0.1800 ± 0.0272 28 0.7778 33 0.9167 0.0445 89.9875
8 0.10 744.69 200 24 0.1200 ± 0.0230 18 0.7500 14 0.5833 0.0278 914.8707
9 0.50 136.97 200 122 0.6100 ± 0.0345 102 0.8361 107 0.8770 0.0350 177.6496
10 0.90 15.29 200 13 0.0650 ± 0.0174 7 0.5385 12 0.9231 0.0524 75.2728
11 0.50 190.16 200 161 0.8050 ± 0.0280 131 0.8137 148 0.9193 0.0317 186.9565
12 0.14 664.90 200 34 0.1700 ± 0.0266 27 0.7941 23 0.6765 0.0289 790.7153
13 0.50 163.57 200 141 0.7050 ± 0.0322 106 0.7518 127 0.9007 0.0334 181.7568
14 0.38 531.92 200 169 0.8450 ± 0.0256 130 0.7692 142 0.8402 0.0214 308.6828
15 0.14 1196.83 200 96 0.4800 ± 0.0353 82 0.8542 89 0.9271 0.0240 807.8491
16 0.50 110.37 200 77 0.3850 ± 0.0344 54 0.7013 61 0.7922 0.0372 173.8191
17 0.10 1276.62 200 95 0.4750 ± 0.0353 80 0.8421 81 0.8526 0.0249 1001.8887
18 0.90 20.61 200 34 0.1700 ± 0.0266 25 0.7353 27 0.7941 0.0492 71.4330
19 0.66 132.98 200 117 0.5850 ± 0.0348 90 0.7692 108 0.9231 0.0319 135.6544
20 0.90 12.63 200 19 0.0950 ± 0.0207 12 0.6316 11 0.5789 0.0474 137.4571
21 0.90 17.95 200 27 0.1350 ± 0.0242 19 0.7037 21 0.7778 0.0491 85.2629
22 0.90 23.27 200 34 0.1700 ± 0.0266 28 0.8235 32 0.9412 0.0500 72.9724
23 0.78 79.79 200 84 0.4200 ± 0.0349 73 0.8690 75 0.8929 0.0379 106.7026
24 0.10 1542.58 200 104 0.5200 ± 0.0353 88 0.8462 91 0.8750 0.0217 1026.1458
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Figure 1: Distributions of the best fit values of E, the signal peak position in
Problem 1, for challenge datasets for which Tom claims evidence with a claimed
Type-I error rate of 1%, split up by signal test category. The categories are
listed in Table 1; the first category corresponds to the null hypothesis. Tom
starts his fit with a guess of 0.5 explaining the peak in category 1.

8



0

20

0 500
0

10

0 200
0

20

40

0 1000
0

20

0 2500
0

1

2

0 1000

0

10

0 200
0

10

0 100
0

5

0 2000
0

20

40

0 500
0

5

0 50

0

25

50

0 500
0

5

10

0 2000
0

20

40

0 500
0

25

50

0 2000
0

20

40

0 2500

0

10

20

0 250
0

20

40

0 5000
0

10

0 50
0

20

0 500
0

5

10

0 50

0

5

10

0 50
0

10

0 50
0

20

0 200
0

20

40

0 5000

1

S
im

u
la

te
d

 D
at

as
et

s 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

21 22 23 24

D

Figure 2: Distributions of the upper and lower interval edges for D, the signal
rate parameter for Problem 1, for challenge datasets for which Tom claims
evidence with a claimed Type-I error rate of 1%, split up by signal test category.
The categories are listed in Table 1; the first category corresponds to the null
hypothesis. The red dashed histograms show the distributions of the lower edge
of the reported intervals, and the blue solid histograms show the distribution
of the upper edges. The black lines show the true signal position. Overflows
are collected in the last bin. The vertical scales on this plot are set by the
red dashed histograms – the blue histograms may extend above the tops of the
panels.
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for Tom’s solution to Problem 1.
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Figure 4: Distributions of the upper and lower interval edges for E, the signal
position parameter for Problem 1, for challenge datasets for which Tom claims
evidence with a claimed Type-I error rate of 1%, split up by signal test category.
The categories are listed in Table 1; the first category corresponds to the null
hypothesis. The red dashed histograms show the distributions of the lower edge
of the reported intervals, and the blue solid histograms show the distribution of
the upper edges. The black lines show the true signal position.
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2.2.2 From Wolfgang Rolke

For Challenge Problem #1, Wolfgang Rolke provided a solution based on a
log-likelihood ratio test statistic performing two fits to each dataset. The distri-
bution of the test statistic is predicted using simulation, since no χ2 distribution
models it for any value of the number of degrees of freedom. The critical value
of the log-likelihood ratio depends on the sample size but Wolfgang found it
to be roughly 11.5 for the different sample sizes in the challenge datasets. The
Look-Elsewhere Effect is handled by allowing any value of E to be fit in the
simulated null hypothesis datasets used to calibrate the critical value.

Table 4 lists the error rates in the challenge datasets for Wolfgang’s solution.
The Type-I error rate is 1% as desired.
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Table 4: Problem 1 performance evaluation for Wolfgang Rolke’s solution. The uncertainties quoted are the Gaussian approx-
imation to binomial uncertainties,

√

f(1 − f)/n. See the caption of Table 3 for definitions of the columns.

Category Etrue Dtrue nrep ndisc fdisc nEcorr fEcorr nDcorr fDcorr 〈Ewid〉 〈Dwid〉
1 — 0.00 15400 159 0.0103 ± 0.0008 — — 0 0.0000 0.0249 398.0893
2 0.50 83.78 200 23 0.1150 ± 0.0226 13 0.5652 1 0.0435 0.0262 116.7739
3 0.38 265.96 200 112 0.5600 ± 0.0351 66 0.5893 70 0.6250 0.0236 193.4187
4 0.10 1010.65 200 76 0.3800 ± 0.0343 51 0.6711 33 0.4342 0.0196 712.8289
5 0.10 478.73 200 5 0.0250 ± 0.0110 2 0.4000 0 0.0000 0.0236 737.1400
6 0.66 66.49 200 64 0.3200 ± 0.0330 39 0.6094 43 0.6719 0.0268 79.8875
7 0.78 39.89 200 72 0.3600 ± 0.0339 43 0.5972 45 0.6250 0.0281 70.1986
8 0.10 744.69 200 40 0.2000 ± 0.0283 18 0.4500 3 0.0750 0.0198 685.9375
9 0.50 136.97 200 105 0.5250 ± 0.0353 68 0.6476 57 0.5429 0.0248 126.5714
10 0.90 15.29 200 15 0.0750 ± 0.0186 6 0.4000 9 0.6000 0.0311 52.1133
11 0.50 190.16 200 158 0.7900 ± 0.0288 105 0.6646 122 0.7722 0.0222 131.1456
12 0.14 664.90 200 49 0.2450 ± 0.0304 30 0.6122 9 0.1837 0.0221 547.3857
13 0.50 163.57 200 126 0.6300 ± 0.0341 78 0.6190 81 0.6429 0.0230 128.4675
14 0.38 531.92 200 199 0.9950 ± 0.0050 139 0.6985 145 0.7286 0.0153 218.2327
15 0.14 1196.83 200 185 0.9250 ± 0.0186 127 0.6865 140 0.7568 0.0174 573.9854
16 0.50 110.37 200 66 0.3300 ± 0.0332 31 0.4697 23 0.3485 0.0273 123.5334
17 0.10 1276.62 200 135 0.6750 ± 0.0331 94 0.6963 87 0.6444 0.0180 732.7238
18 0.90 20.61 200 53 0.2650 ± 0.0312 31 0.5849 23 0.4340 0.0310 63.5094
19 0.66 132.98 200 184 0.9200 ± 0.0192 116 0.6304 139 0.7554 0.0228 93.8962
20 0.90 12.63 200 27 0.1350 ± 0.0242 15 0.5556 11 0.4074 0.0305 78.9630
21 0.90 17.95 200 43 0.2150 ± 0.0290 24 0.5581 19 0.4419 0.0310 70.2302
22 0.90 23.27 200 52 0.2600 ± 0.0310 31 0.5962 26 0.5000 0.0322 55.3750
23 0.78 79.79 200 161 0.8050 ± 0.0280 111 0.6894 130 0.8075 0.0259 71.6441
24 0.10 1542.58 200 178 0.8900 ± 0.0221 130 0.7303 132 0.7416 0.0158 754.2759
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Figure 5: Distributions of the best fit values of E, the signal peak position in
Problem 1, for challenge datasets for which Wolfgang claims evidence with a
claimed Type-I error rate of 1%, split up by signal test category. The categories
are listed in Table 1; the first category corresponds to the null hypothesis.
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Figure 6: Distributions of the upper and lower interval edges for D, the signal
rate parameter for Problem 1, for challenge datasets for which Wolfgang claims
evidence with a claimed Type-I error rate of 1%, split up by signal test category.
The categories are listed in Table 1; the first category corresponds to the null
hypothesis. The red dashed histograms show the distributions of the lower edge
of the reported intervals, and the blue solid histograms show the distribution
of the upper edges. The black lines show the true signal position. Overflows
are collected in the last bin. The vertical scales on this plot are set by the
red dashed histograms – the blue histograms may extend above the tops of the
panels.
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Figure 7: Distribution of the quoted p value in null hypothesis challenge datasets
for Wolfgang’s solution to Problem 1.
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Figure 8: Distributions of the upper and lower interval edges for E, the signal
position parameter for Problem 1, for challenge datasets for which Wolfgang
claims evidence with a claimed Type-I error rate of 1%, split up by signal test
category. The categories are listed in Table 1; the first category corresponds
to the null hypothesis. The red dashed histograms show the distributions of
the lower edge of the reported intervals, and the blue solid histograms show the
distribution of the upper edges. The black lines show the true signal position.
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2.2.3 From the Stanford Challenge Team

The Stanford Challenge Team (SCT) consists of Brad Efron, Trevor Hastie,
Omkar Muralidharan, Balasubramanian Narasimhan, Jeffrey Scargle, Rob Tib-
shirani, and Ryan Tibshirani. The SCT provided a solution to Problem 1
based on a log-likelihood ratio test statistic performing two fits to each dataset.
The distribution of the test statistic is predicted using simulation. The Look-
Elsewhere Effect is handled by allowing any value of E to be fit in the simulated
null hypothesis datasets used to calibrate the critical value. The parameters D
and E were fit for using a maximum-likelihood approach, and used the non-
parametric bootstrap to estimate the variability of the results.

Table 5 lists the error rates in the challenge datasets for the SCT’s solution.
The Type-I error rate is just under 1% as desired. The upturn in the distribution
of the quoted p values for null outcomes shown in Figure 11 at high quoted p
values is an indication of the slight overcoverage at small values of the quoted
p value.
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Table 5: Problem 1 performance evaluation for the Stanford Challenge Team’s solution. The uncertainties quoted are the
Gaussian approximation to binomial uncertainties,

√

f(1 − f)/n. See the caption of Table 3 for definitions of the columns.

Category Etrue Dtrue nrep ndisc fdisc nEcorr fEcorr nDcorr fDcorr 〈Ewid〉 〈Dwid〉
1 — 0.00 15400 118 0.0077 ± 0.0007 — — 0 0.0000 0.0385 242.6723
2 0.50 83.78 200 23 0.1150 ± 0.0226 17 0.7391 6 0.2609 0.0448 115.4431
3 0.38 265.96 200 112 0.5600 ± 0.0351 80 0.7143 74 0.6607 0.0331 193.5983
4 0.10 1010.65 200 71 0.3550 ± 0.0338 50 0.7042 39 0.5493 0.0216 709.0595
5 0.10 478.73 200 5 0.0250 ± 0.0110 3 0.6000 0 0.0000 0.0263 730.5103
6 0.66 66.49 200 64 0.3200 ± 0.0330 43 0.6719 47 0.7344 0.0342 76.7652
7 0.78 39.89 200 71 0.3550 ± 0.0338 49 0.6901 31 0.4366 0.0359 65.9234
8 0.10 744.69 200 38 0.1900 ± 0.0277 23 0.6053 5 0.1316 0.0244 691.4062
9 0.50 136.97 200 104 0.5200 ± 0.0353 77 0.7404 61 0.5865 0.0320 126.3906
10 0.90 15.29 200 15 0.0750 ± 0.0186 12 0.8000 4 0.2667 0.0589 42.1555
11 0.50 190.16 200 158 0.7900 ± 0.0288 116 0.7342 125 0.7911 0.0281 130.5645
12 0.14 664.90 200 49 0.2450 ± 0.0304 30 0.6122 12 0.2449 0.0263 545.1991
13 0.50 163.57 200 126 0.6300 ± 0.0341 86 0.6825 83 0.6587 0.0300 128.7363
14 0.38 531.92 200 199 0.9950 ± 0.0050 134 0.6734 144 0.7236 0.0173 219.5495
15 0.14 1196.83 200 185 0.9250 ± 0.0186 119 0.6432 146 0.7892 0.0206 577.7383
16 0.50 110.37 200 65 0.3250 ± 0.0331 40 0.6154 29 0.4462 0.0379 122.6103
17 0.10 1276.62 200 135 0.6750 ± 0.0331 104 0.7704 95 0.7037 0.0204 720.1168
18 0.90 20.61 200 53 0.2650 ± 0.0312 45 0.8491 25 0.4717 0.0541 53.5806
19 0.66 132.98 200 184 0.9200 ± 0.0192 109 0.5924 130 0.7065 0.0255 91.4350
20 0.90 12.63 200 27 0.1350 ± 0.0242 20 0.7407 0 0.0000 0.0562 69.1609
21 0.90 17.95 200 42 0.2100 ± 0.0288 31 0.7381 7 0.1667 0.0578 48.4375
22 0.90 23.27 200 52 0.2600 ± 0.0310 44 0.8462 33 0.6346 0.0544 45.1804
23 0.78 79.79 200 159 0.7950 ± 0.0285 114 0.7170 114 0.7170 0.0321 65.9111
24 0.10 1542.58 200 177 0.8850 ± 0.0226 141 0.7966 139 0.7853 0.0175 750.7211
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Figure 9: Distributions of the best fit values of E, the signal peak position in
Problem 1, for challenge datasets for which the SCT claims evidence with a
claimed Type-I error rate of 1%, split up by signal test category. The categories
are listed in Table 1; the first category corresponds to the null hypothesis.
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Figure 10: Distributions of the upper and lower interval edges for D, the signal
rate parameter for Problem 1, for challenge datasets for which the SCT claims
evidence with a claimed Type-I error rate of 1%, split up by signal test category.
The categories are listed in Table 1; the first category corresponds to the null
hypothesis. The red dashed histograms show the distributions of the lower edge
of the reported intervals, and the blue solid histograms show the distribution
of the upper edges. The black lines show the true signal position. Overflows
are collected in the last bin. The vertical scales on this plot are set by the
red dashed histograms – the blue histograms may extend above the tops of the
panels.
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Figure 11: Distribution of the quoted p value in null hypothesis challenge
datasets for the SCT’s solution to Problem 1.
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Figure 12: Distributions of the upper and lower interval edges for E, the signal
position parameter for Problem 1, for challenge datasets for which the SCT
claims evidence with a claimed Type-I error rate of 1%, split up by signal test
category. The categories are listed in Table 1; the first category corresponds
to the null hypothesis. The red dashed histograms show the distributions of
the lower edge of the reported intervals, and the blue solid histograms show the
distribution of the upper edges. The black lines show the true signal position.
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2.2.4 From Eilam Gross and Ofer Vitells

Eilam and Ofer provided a solution to Problem 1 based on a two-fit log likelihood
ratio similar to those used by other participants. The Look-Elsewhere Effect is
addressed using a procedure described in [1]. Confidence intervals for D and E
are computed using ∆2 logλ = 1, additionally setting the lower bound on the
signal rate to be zero when P (q0 ≤ qobserved

0 |H0) = 68%.
Table 6 lists the error rates in the challenge datasets for Eilam and Ofer’s

solution. The Type-I error rate is just under 1% as desired. The distribution of
the p values in the null datasets, shown in Figure 15 is interesting, as the quoted
p values exceed unity. This is presumably a consequence of the procedure used
to account for the trials factor. Since it affects large p values and not the ones
near the critical point of 0.01, it does not have an impact on the result. Typically
if there is insufficient evidence for a signal, a particle physics experiment does
not compute a p value and instead quotes upper limits on the signal rate, and
so the large p values do not have an impact on any results.
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Table 6: Problem 1 performance evaluation for Eilam and Ofer’s solution. The uncertainties quoted are the Gaussian approx-
imation to binomial uncertainties,

√

f(1 − f)/n. See the caption of Table 3 for definitions of the columns.

Category Etrue Dtrue nrep ndisc fdisc nEcorr fEcorr nDcorr fDcorr 〈Ewid〉 〈Dwid〉
1 — 0.00 15400 124 0.0081 ± 0.0007 — — 0 0.0000 0.0274 242.2684
2 0.50 83.78 200 24 0.1200 ± 0.0230 16 0.6667 2 0.0833 0.0291 118.6147
3 0.38 265.96 200 114 0.5700 ± 0.0350 68 0.5965 74 0.6491 0.0227 195.0962
4 0.10 1010.65 200 72 0.3600 ± 0.0339 44 0.6111 36 0.5000 0.0177 725.0212
5 0.10 478.73 200 5 0.0250 ± 0.0110 2 0.4000 0 0.0000 0.0190 741.5024
6 0.66 66.49 200 64 0.3200 ± 0.0330 38 0.5938 42 0.6562 0.0262 80.9731
7 0.78 39.89 200 74 0.3700 ± 0.0341 48 0.6486 40 0.5405 0.0299 72.7214
8 0.10 744.69 200 39 0.1950 ± 0.0280 17 0.4359 4 0.1026 0.0187 695.0071
9 0.50 136.97 200 105 0.5250 ± 0.0353 64 0.6095 61 0.5810 0.0242 128.7545
10 0.90 15.29 200 16 0.0800 ± 0.0192 7 0.4375 0 0.0000 0.0361 49.7170
11 0.50 190.16 200 160 0.8000 ± 0.0283 108 0.6750 130 0.8125 0.0215 133.4258
12 0.14 664.90 200 49 0.2450 ± 0.0304 27 0.5510 12 0.2449 0.0202 559.3315
13 0.50 163.57 200 126 0.6300 ± 0.0341 77 0.6111 83 0.6587 0.0242 130.6738
14 0.38 531.92 200 199 0.9950 ± 0.0050 111 0.5578 149 0.7487 0.0133 221.4849
15 0.14 1196.83 200 185 0.9250 ± 0.0186 126 0.6811 144 0.7784 0.0168 583.2854
16 0.50 110.37 200 67 0.3350 ± 0.0334 36 0.5373 27 0.4030 0.0260 125.5202
17 0.10 1276.62 200 135 0.6750 ± 0.0331 89 0.6593 95 0.7037 0.0162 736.7133
18 0.90 20.61 200 54 0.2700 ± 0.0314 35 0.6481 31 0.5741 0.0333 62.8133
19 0.66 132.98 200 184 0.9200 ± 0.0192 72 0.3913 147 0.7989 0.0167 94.8142
20 0.90 12.63 200 27 0.1350 ± 0.0242 18 0.6667 0 0.0000 0.0351 77.9128
21 0.90 17.95 200 42 0.2100 ± 0.0288 25 0.5952 0 0.0000 0.0322 57.2445
22 0.90 23.27 200 52 0.2600 ± 0.0310 35 0.6731 24 0.4615 0.0330 53.6616
23 0.78 79.79 200 163 0.8150 ± 0.0275 74 0.4540 133 0.8160 0.0198 74.3283
24 0.10 1542.58 200 178 0.8900 ± 0.0221 127 0.7135 136 0.7640 0.0151 765.4595
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Figure 13: Distributions of the best fit values of E, the signal peak position in
Problem 1, for challenge datasets for which Eilam and Ofer claim evidence with a
claimed Type-I error rate of 1%, split up by signal test category. The categories
are listed in Table 1; the first category corresponds to the null hypothesis.
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Figure 14: Distributions of the upper and lower interval edges for D, the signal
rate parameter for Problem 1, for challenge datasets for which Eilam and Ofer
claim evidence with a claimed Type-I error rate of 1%, split up by signal test
category. The categories are listed in Table 1; the first category corresponds
to the null hypothesis. The red dashed histograms show the distributions of
the lower edge of the reported intervals, and the blue solid histograms show the
distribution of the upper edges. The black lines show the true signal position.
Overflows are collected in the last bin. The vertical scales on this plot are set
by the red dashed histograms – the blue histograms may extend above the tops
of the panels.
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Figure 15: Distribution of the quoted p value in null hypothesis challenge
datasets for Eilam and Ofer’s solution to Problem 1. The look-elsewhere cor-
rection factor makes the maximum value of the p value exceed 1.0.
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Figure 16: Distributions of the upper and lower interval edges for E, the signal
position parameter for Problem 1, for challenge datasets for which Eilam and
Ofer claim evidence with a claimed Type-I error rate of 1%, split up by signal
test category. The categories are listed in Table 1; the first category corresponds
to the null hypothesis. The red dashed histograms show the distributions of the
lower edge of the reported intervals, and the blue solid histograms show the
distribution of the upper edges. The black lines show the true signal position.
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2.2.5 From Valentin Niess

For Challenge Problem #1, Valentin Niess provided a solution based on a
method which counts events within a bracketing interval chosen to maximize
the sensitivity to find a signal. The half width of the bracketing interval is 1.4σ
where σ = 0.03, the signal width in E. A search over Nbin brackets allows the
best-fit value of E to be anywhere in the range 0 ≤ E ≤ 1. An effective dimen-
sion Neff = 9 provides a factor to adjust the p value for the Look-Elsewhere
Effect.

Table 7 lists the error rates in the challenge datasets for Valentin’s solution.
The Type-I error rate is not measurably different from 1% as desired. Even
though Valentin’s p value distribution tilts up at large values of the p value,
as can be seen in Figure 19, the distribution rises again for p < 0.01, giving
approximately the correct coverage at this choice of the desired Type-I error
rate. Valentin’s estimate Type-II error rates, listed in Table 2 were computed
using a sample of simulated datasets with a fixed number of marks in them –
1000. Since the sample of null-hypothesis simulated datasets in the Challenge
sample was drawn from a different sample space – varying A and choosing
Poisson-fluctuated data from the varied value of A for each simulated dataset,
we do not expect the error rates to match up perfectly.

Valentin recomputed his expected sensitivities releasing the total event count
of 1000 requirement, which had the side effect of reducing the background rate
for large signals and increasing it for small signals. The new powers are:

D = 1010 E = 0.1 β = 0.34

D = 137 E = 0.5 β = 0.46

D = 18 E = 0.9 β = 0.17

Since these came in after the solutions were released, the tables and plots remain
the same.
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Table 7: Problem 1 performance evaluation for Valentin Niess’s solution. The uncertainties quoted are the Gaussian approxi-
mation to binomial uncertainties,

√

f(1 − f)/n. See the caption of Table 3 for definitions of the columns.

Category Etrue Dtrue nrep ndisc fdisc nEcorr fEcorr nDcorr fDcorr 〈Ewid〉 〈Dwid〉
1 — 0.00 15400 171 0.0111 ± 0.0008 — — 0 0.0000 0.0365 436.3579
2 0.50 83.78 200 19 0.0950 ± 0.0207 14 0.7368 0 0.0000 0.0369 76.5268
3 0.38 265.96 200 114 0.5700 ± 0.0350 82 0.7193 76 0.6667 0.0340 148.9114
4 0.10 1010.65 200 65 0.3250 ± 0.0331 51 0.7846 37 0.5692 0.0310 772.5247
5 0.10 478.73 200 6 0.0300 ± 0.0121 5 0.8333 0 0.0000 0.0432 690.0167
6 0.66 66.49 200 61 0.3050 ± 0.0326 48 0.7869 31 0.5082 0.0395 33.6639
7 0.78 39.89 200 66 0.3300 ± 0.0332 47 0.7121 5 0.0758 0.0415 12.5427
8 0.10 744.69 200 30 0.1500 ± 0.0252 12 0.4000 8 0.2667 0.0270 738.9333
9 0.50 136.97 200 106 0.5300 ± 0.0353 77 0.7264 61 0.5755 0.0371 78.9471
10 0.90 15.29 200 17 0.0850 ± 0.0197 8 0.4706 1 0.0588 0.0432 10.2747
11 0.50 190.16 200 156 0.7800 ± 0.0293 122 0.7821 97 0.6218 0.0349 78.0085
12 0.14 664.90 200 44 0.2200 ± 0.0293 31 0.7045 20 0.4545 0.0358 563.5585
13 0.50 163.57 200 127 0.6350 ± 0.0340 97 0.7638 81 0.6378 0.0367 78.8177
14 0.38 531.92 200 197 0.9850 ± 0.0086 149 0.7563 87 0.4416 0.0273 146.4340
15 0.14 1196.83 200 178 0.8900 ± 0.0221 138 0.7753 129 0.7247 0.0285 583.5477
16 0.50 110.37 200 59 0.2950 ± 0.0322 43 0.7288 18 0.3051 0.0400 77.6622
17 0.10 1276.62 200 124 0.6200 ± 0.0343 86 0.6935 92 0.7419 0.0274 787.9966
18 0.90 20.61 200 51 0.2550 ± 0.0308 32 0.6275 6 0.1176 0.0432 20.4871
19 0.66 132.98 200 182 0.9100 ± 0.0202 133 0.7308 64 0.3516 0.0353 36.9306
20 0.90 12.63 200 23 0.1150 ± 0.0226 14 0.6087 4 0.1739 0.0389 42.3548
21 0.90 17.95 200 39 0.1950 ± 0.0280 24 0.6154 3 0.0769 0.0460 19.2436
22 0.90 23.27 200 47 0.2350 ± 0.0300 29 0.6170 2 0.0426 0.0440 7.9202
23 0.78 79.79 200 158 0.7900 ± 0.0288 114 0.7215 40 0.2532 0.0382 19.4998
24 0.10 1542.58 200 165 0.8250 ± 0.0269 124 0.7515 118 0.7152 0.0276 797.7090
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Figure 17: Distributions of the best fit values of E, the signal peak position
in Problem 1, for challenge datasets for which Valentin claims evidence with a
claimed Type-I error rate of 1%, split up by signal test category. The categories
are listed in Table 1; the first category corresponds to the null hypothesis.

32



0

20

40

0 500
0

2

4

0 200
0

20

0 1000
0

10

20

0 2500
0

1

2

0 1000

0

10

20

30

0 200
0

10

20

0 100
0

5

0 2000
0

20

0 500
0

2.5

5

0 50

0

20

40

0 500
0

10

0 2000
0

20

40

0 500
0

50

0 2000
0

50

0 2500

0

10

20

0 250
0

20

40

0 5000
0

10

0 50
0

25

50

0 500
0

2

4

0 50

0

5

0 50
0

5

10

0 50
0

25

50

0 200
0

50

0 5000

1

S
im

u
la

te
d

 D
at

as
et

s 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

21 22 23 24

D

Figure 18: Distributions of the upper and lower interval edges for D, the signal
rate parameter for Problem 1, for challenge datasets for which Valentin claims
evidence with a claimed Type-I error rate of 1%, split up by signal test category.
The categories are listed in Table 1; the first category corresponds to the null
hypothesis. The red dashed histograms show the distributions of the lower edge
of the reported intervals, and the blue solid histograms show the distribution
of the upper edges. The black lines show the true signal position. Overflows
are collected in the last bin. The vertical scales on this plot are set by the
red dashed histograms – the blue histograms may extend above the tops of the
panels.
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Figure 19: Distribution of the quoted p value in null hypothesis challenge
datasets for Valentin’s solution to Problem 1. One hundred bins are chosen
for this figure to show the rise in the distribution below p = 0.01.
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Figure 20: Distributions of the upper and lower interval edges for E, the signal
position parameter for Problem 1, for challenge datasets for which Valentin
claims evidence with a claimed Type-I error rate of 1%, split up by signal test
category. The categories are listed in Table 1; the first category corresponds
to the null hypothesis. The red dashed histograms show the distributions of
the lower edge of the reported intervals, and the blue solid histograms show the
distribution of the upper edges. The black lines show the true signal position.
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2.2.6 From Georgios Choudalakis

For Challenge Problem #1, Georgios Choudalakis provided a solution using his
BumpHunter program [2]. In this case, the marks were binned in a histogram
with 40 bins from 0 to 1. The contents of bins are collected into a signal window
and sidebands on either side of the proposed signal window. The event count in
the signal window and a fit to the background outside of the signal window are
used to construct the test statistic for discovery. The Look-Elsewhere Effect is
taken into account by constructing “hyper-tests” –

Table 8 lists the error rates in the challenge datasets for Georgios’s solution.
The Type-I error rate is not measurably different from 1%.

BumpHunter optimizes its computation by running simulations until there
is sufficient confidence that p > 0.01 or that p < 0.01. Often, 10 simulated null
repetitions are sufficient to make a decision if it is clear that a signal is not
present, and sometimes it takes more. This computational optimization makes
the quoted p value distribution rather discrete, particularly at large p values, as
can be seen in Figure 23. More simulated null datasets are generated for smaller
p values; for p values very close to 0.01, a larger amount of CPU is required to
make a decision.

36



Table 8: Problem 1 performance evaluation for Georgios Choudalakis’s solution. The uncertainties quoted are the Gaussian
approximation to binomial uncertainties,

√

f(1 − f)/n. One of the challenge datasets in signal category 9 resulted in an
unusually large interval for D (perhaps a fit failure), making the average width very large. See the caption of Table 3 for
definitions of the columns.

Category Etrue Dtrue nrep ndisc fdisc nEcorr fEcorr nDcorr fDcorr 〈Ewid〉 〈Dwid〉
1 — 0.00 15400 169 0.0110 ± 0.0008 — — 24 0.1420 0.0386 371.8143
2 0.50 83.78 200 19 0.0950 ± 0.0207 8 0.4211 8 0.4211 0.0270 118.8511
3 0.38 265.96 200 66 0.3300 ± 0.0332 32 0.4848 33 0.5000 0.0216 207.7717
4 0.10 1010.65 200 32 0.1600 ± 0.0259 19 0.5938 10 0.3125 0.0169 743.2350
5 0.10 478.73 200 1 0.0050 ± 0.0050 0 0.0000 0 0.0000 0.0161 662.3292
6 0.66 66.49 200 48 0.2400 ± 0.0302 30 0.6250 22 0.4583 0.0404 128.4285
7 0.78 39.89 200 64 0.3200 ± 0.0330 43 0.6719 25 0.3906 0.0542 175.9160
8 0.10 744.69 200 23 0.1150 ± 0.0226 10 0.4348 4 0.1739 0.0213 680.9976
9 0.50 136.97 200 70 0.3500 ± 0.0337 38 0.5429 40 0.5714 0.0305 134.5548
10 0.90 15.29 200 12 0.0600 ± 0.0168 8 0.6667 7 0.5833 0.0945 879549.6875
11 0.50 190.16 200 127 0.6350 ± 0.0340 80 0.6299 99 0.7795 0.0245 136.5050
12 0.14 664.90 200 21 0.1050 ± 0.0217 9 0.4286 3 0.1429 0.0191 1062.2715
13 0.50 163.57 200 105 0.5250 ± 0.0353 52 0.4952 71 0.6762 0.0264 136.4800
14 0.38 531.92 200 181 0.9050 ± 0.0207 114 0.6298 125 0.6906 0.0150 232.8503
15 0.14 1196.83 200 117 0.5850 ± 0.0348 67 0.5726 78 0.6667 0.0161 590.5674
16 0.50 110.37 200 46 0.2300 ± 0.0298 21 0.4565 22 0.4783 0.0300 135.2062
17 0.10 1276.62 200 74 0.3700 ± 0.0341 50 0.6757 32 0.4324 0.0152 751.2043
18 0.90 20.61 200 33 0.1650 ± 0.0262 26 0.7879 18 0.5455 0.0804 863.1549
19 0.66 132.98 200 168 0.8400 ± 0.0259 103 0.6131 129 0.7679 0.0316 123.8590
20 0.90 12.63 200 18 0.0900 ± 0.0202 11 0.6111 6 0.3333 0.0712 359.1638
21 0.90 17.95 200 26 0.1300 ± 0.0238 20 0.7692 11 0.4231 0.0876 170.1461
22 0.90 23.27 200 33 0.1650 ± 0.0262 26 0.7879 16 0.4848 0.0860 302.4461
23 0.78 79.79 200 147 0.7350 ± 0.0312 91 0.6190 103 0.7007 0.0494 159.9960
24 0.10 1542.58 200 111 0.5550 ± 0.0351 73 0.6577 69 0.6216 0.0145 770.1436
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Figure 21: Distributions of the best fit values of E, the signal peak position
in Problem 1, for challenge datasets for which Georgios claims evidence with a
claimed Type-I error rate of 1%, split up by signal test category. The categories
are listed in Table 1; the first category corresponds to the null hypothesis.
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Figure 22: Distributions of the upper and lower interval edges for D, the signal
rate parameter for Problem 1, for challenge datasets for which Georgios claims
evidence with a claimed Type-I error rate of 1%, split up by signal test category.
The categories are listed in Table 1; the first category corresponds to the null
hypothesis. The red dashed histograms show the distributions of the lower edge
of the reported intervals, and the blue solid histograms show the distribution
of the upper edges. The black lines show the true signal position. Overflows
are collected in the last bin. The vertical scales on this plot are set by the
red dashed histograms – the blue histograms may extend above the tops of the
panels.
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Figure 23: Distribution of the quoted p value in null hypothesis challenge
datasets for Georgios’s solution to Problem 1.
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Figure 24: Distributions of the upper and lower interval edges for E, the signal
position parameter for Problem 1, for challenge datasets for which Georgios
claims evidence with a claimed Type-I error rate of 1%, split up by signal test
category. The categories are listed in Table 1; the first category corresponds
to the null hypothesis. The red dashed histograms show the distributions of
the lower edge of the reported intervals, and the blue solid histograms show the
distribution of the upper edges. The black lines show the true signal position.
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2.2.7 From Mark Allen

For Challenge Problem #1, Mark Allen provided a solution based on an un-
binned maximum-likelihood fit, ∆ logL as the test statistic for computing p
values. In order to find the global maximum of the likelihood most often, sev-
eral fits are performed with different starting conditions. The p values are
computed by comparing a dataset’s test statistic with a distribution of a large
number of simulated background-only datasets. Since a signal can be found
anywhere in the distribution on any of the simulated background-only datasets,
the Look-Elsewhere Effect is taken into account.

Table 9 lists the error rates in the challenge datasets for Mark’s solution.
The Type-I error rate is not measurably different from 1%, as desired.
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Table 9: Problem 1 performance evaluation for Mark Allen’s solution. The uncertainties quoted are the Gaussian approximation
to binomial uncertainties,

√

f(1− f)/n. See the caption of Table 3 for definitions of the columns.

Category Etrue Dtrue nrep ndisc fdisc nEcorr fEcorr nDcorr fDcorr 〈Ewid〉 〈Dwid〉
1 — 0.00 15400 164 0.0106 ± 0.0008 — — 0 0.0000 0.0256 377.2259
2 0.50 83.78 200 24 0.1200 ± 0.0230 16 0.6667 2 0.0833 0.0292 119.2689
3 0.38 265.96 200 114 0.5700 ± 0.0350 68 0.5965 74 0.6491 0.0228 196.1854
4 0.10 1010.65 200 80 0.4000 ± 0.0346 51 0.6375 44 0.5500 0.0187 736.7384
5 0.10 478.73 200 5 0.0250 ± 0.0110 2 0.4000 0 0.0000 0.0197 752.8884
6 0.66 66.49 200 66 0.3300 ± 0.0332 42 0.6364 43 0.6515 0.0286 80.7764
7 0.78 39.89 200 75 0.3750 ± 0.0342 51 0.6800 41 0.5467 0.0310 72.8878
8 0.10 744.69 200 40 0.2000 ± 0.0283 18 0.4500 5 0.1250 0.0192 704.9865
9 0.50 136.97 200 105 0.5250 ± 0.0353 65 0.6190 62 0.5905 0.0244 129.4742
10 0.90 15.29 200 16 0.0800 ± 0.0192 7 0.4375 0 0.0000 0.0369 49.9948
11 0.50 190.16 200 160 0.8000 ± 0.0283 111 0.6938 130 0.8125 0.0224 134.1713
12 0.14 664.90 200 50 0.2500 ± 0.0306 28 0.5600 13 0.2600 0.0205 562.1276
13 0.50 163.57 200 130 0.6500 ± 0.0337 80 0.6154 87 0.6692 0.0233 130.9396
14 0.38 531.92 200 199 0.9950 ± 0.0050 136 0.6834 149 0.7487 0.0153 222.7198
15 0.14 1196.83 200 185 0.9250 ± 0.0186 127 0.6865 146 0.7892 0.0169 586.5714
16 0.50 110.37 200 69 0.3450 ± 0.0336 38 0.5507 29 0.4203 0.0268 126.2137
17 0.10 1276.62 200 136 0.6800 ± 0.0330 88 0.6471 95 0.6985 0.0171 744.3584
18 0.90 20.61 200 54 0.2700 ± 0.0314 37 0.6852 31 0.5741 0.0355 63.1787
19 0.66 132.98 200 184 0.9200 ± 0.0192 111 0.6033 147 0.7989 0.0232 95.3406
20 0.90 12.63 200 27 0.1350 ± 0.0242 18 0.6667 0 0.0000 0.0355 78.6395
21 0.90 17.95 200 42 0.2100 ± 0.0288 25 0.5952 1 0.0238 0.0352 57.5532
22 0.90 23.27 200 53 0.2650 ± 0.0312 37 0.6981 24 0.4528 0.0353 53.9548
23 0.78 79.79 200 164 0.8200 ± 0.0272 110 0.6707 134 0.8171 0.0273 74.6528
24 0.10 1542.58 200 178 0.8900 ± 0.0221 125 0.7022 135 0.7584 0.0155 773.4517
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Figure 25: Distributions of the best fit values of E, the signal peak position
in Problem 1, for challenge datasets for which Mark claims evidence with a
claimed Type-I error rate of 1%, split up by signal test category. The categories
are listed in Table 1; the first category corresponds to the null hypothesis.
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Figure 26: Distributions of the upper and lower interval edges for D, the signal
rate parameter for Problem 1, for challenge datasets for which Mark claims
evidence with a claimed Type-I error rate of 1%, split up by signal test category.
The categories are listed in Table 1; the first category corresponds to the null
hypothesis. The red dashed histograms show the distributions of the lower edge
of the reported intervals, and the blue solid histograms show the distribution
of the upper edges. The black lines show the true signal position. Overflows
are collected in the last bin. The vertical scales on this plot are set by the
red dashed histograms – the blue histograms may extend above the tops of the
panels.
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Figure 27: Distribution of the quoted p value in null hypothesis challenge
datasets for Mark’s solution to Problem 1.
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Figure 28: Distributions of the upper and lower interval edges for E, the signal
position parameter for Problem 1, for challenge datasets for which Mark claims
evidence with a claimed Type-I error rate of 1%, split up by signal test category.
The categories are listed in Table 1; the first category corresponds to the null
hypothesis. The red dashed histograms show the distributions of the lower edge
of the reported intervals, and the blue solid histograms show the distribution of
the upper edges. The black lines show the true signal position.
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2.2.8 From Frederik Beaujean and the BAT Team

The Bayesian Analysis Toolkit (BAT) Team consists of F. Beaujean, A. Cald-
well, and S. Pashapour. For Challenge Problem #1, Frederik Beaujean provided
a solution based on the BAT’s fast Poisson p value estimation, corrected for the
number of degrees of freedom. The value of A that maximizes the posterior prob-
ability in the background-only case is used. If the p-value is less than 0.01, a
Bayesian analysis is conducted, and a discovery is claimed if P (B|Data) < 0.001.
The Look-Elsewhere Effect is taken into account by assuming a prior that favors
the background model. A rather small fraction of the simulated datasets with
injected signals had a discovery claim using this technique.

Table 10 lists the error rates in the challenge datasets for Frederik’s solution.
The Type-I error rate is not measurably different from zero given the size of the
sample of simulated datasets. An earlier version of this note had misinterpreted
the p value as the discovery choice, when in fact the additional requirement on
the value of P (B|Data) lowers the false discovery rate to zero.
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Table 10: Problem 1 performance evaluation for Frederik Beaujean’s solution. The uncertainties quoted are the Gaussian
approximation to binomial uncertainties,

√

f(1 − f)/n. See the caption of Table 3 for definitions of the columns.

Category Etrue Dtrue nrep ndisc fdisc nEcorr fEcorr nDcorr fDcorr 〈Ewid〉 〈Dwid〉
1 — 0.00 15400 0 0.0000 ± 0.0000 — — 0 — — —
2 0.5 83.78 200 0 0.0000 ± 0.0000 0 — 0 — — —
3 0.4 265.96 200 7 0.0350 ± 0.0130 3 0.4286 0 0.0000 0.0178 219.7268
4 0.1 1010.65 200 0 0.0000 ± 0.0000 0 — 0 — — —
5 0.1 478.73 200 0 0.0000 ± 0.0000 0 — 0 — — —
6 0.7 66.49 200 0 0.0000 ± 0.0000 0 — 0 — — —
7 0.8 39.89 200 0 0.0000 ± 0.0000 0 — 0 — — —
8 0.1 744.69 200 0 0.0000 ± 0.0000 0 — 0 — — —
9 0.5 136.97 200 6 0.0300 ± 0.0121 4 0.6667 0 0.0000 0.0174 150.6918
10 0.9 15.29 200 0 0.0000 ± 0.0000 0 — 0 — — —
11 0.5 190.16 200 25 0.1250 ± 0.0234 17 0.6800 4 0.1600 0.0184 148.2737
12 0.1 664.90 200 0 0.0000 ± 0.0000 0 — 0 — — —
13 0.5 163.57 200 15 0.0750 ± 0.0186 8 0.5333 0 0.0000 0.0190 148.2983
14 0.4 531.92 200 124 0.6200 ± 0.0343 86 0.6935 97 0.7823 0.0146 227.3591
15 0.1 1196.83 200 4 0.0200 ± 0.0099 1 0.2500 1 0.2500 0.0123 454.7875
16 0.5 110.37 200 1 0.0050 ± 0.0050 1 1.0000 0 0.0000 0.0201 148.3780
17 0.1 1276.62 200 1 0.0050 ± 0.0050 1 1.0000 0 0.0000 0.0119 457.0601
18 0.9 20.61 200 0 0.0000 ± 0.0000 0 — 0 — — —
19 0.7 132.98 200 50 0.2500 ± 0.0306 27 0.5400 27 0.5400 0.0198 106.3467
20 0.9 12.63 200 0 0.0000 ± 0.0000 0 — 0 — — —
21 0.9 17.95 200 1 0.0050 ± 0.0050 0 0.0000 0 0.0000 0.0322 62.6962
22 0.9 23.27 200 3 0.0150 ± 0.0086 1 0.3333 0 0.0000 0.0260 67.1801
23 0.8 79.79 200 33 0.1650 ± 0.0262 22 0.6667 7 0.2121 0.0216 87.0117
24 0.1 1542.58 200 1 0.0050 ± 0.0050 0 0.0000 1 1.0000 0.0134 534.8101
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Figure 29: Distributions of the best fit values of E, the signal peak position
in Problem 1, for challenge datasets for which Frederik claims evidence with a
claimed Type-I error rate of 1%, split up by signal test category. The categories
are listed in Table 1; the first category corresponds to the null hypothesis.
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Figure 30: Distributions of the upper and lower interval edges for D, the signal
rate parameter for Problem 1, for challenge datasets for which Frederik claims
evidence with a claimed Type-I error rate of 1%, split up by signal test category.
The categories are listed in Table 1; the first category corresponds to the null
hypothesis. The red dashed histograms show the distributions of the lower edge
of the reported intervals, and the blue solid histograms show the distribution
of the upper edges. The black lines show the true signal position. Overflows
are collected in the last bin. The vertical scales on this plot are set by the
red dashed histograms – the blue histograms may extend above the tops of
the panels. Only those signal categories with at least one simulated dataset
resulting in a discovery are shown.
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Figure 31: Distribution of the quoted p value in null hypothesis challenge
datasets for Frederik’s solution to Problem 1. Outcomes with p < 0.01 are
subject to a further requirement that p(B|Data) < 0.001.

52



0

5

0.4 0.6
0

2.5

5

0.1 0.2
0

5

10

0.4 0.6
0

5

10

0.3 0.4
0

50

100

0.4 0.6

0

2

4

0.4 0.6
0

0.5

1

0.4 0.6
0

0.5

1

0.8 1
0

20

40

0.4 0.6
0

0.5

1

0.4 0.6

0

0.5

1

0.8 1
0

20

0.4 0.6
0

0.5

1

0.4 0.6

3 9 11 13 14

15 16 17 19 21

22 23 24

E

Figure 32: Distributions of the upper and lower interval edges for E, the signal
position parameter for Problem 1, for challenge datasets for which Frederik
claims evidence with a claimed Type-I error rate of 1%, split up by signal test
category. The categories are listed in Table 1; the first category corresponds
to the null hypothesis. The red dashed histograms show the distributions of
the lower edge of the reported intervals, and the blue solid histograms show the
distribution of the upper edges. The black lines show the true signal position.
Only those signal categories with at least one simulated dataset resulting in a
discovery are shown.
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2.2.9 From Stefan Schmitt

For Challenge Problem #1, Stefan Schmitt provided a solution based on a frac-
tional event-counting procedure. Two solutions were provided, one using un-
binned fits to the data, while the other bins the data. The weights in Stefan’s
method are designed to test for a signal at a particular value of E and to sup-
press contributions far from the tested peak. Stefan thus scans E in fine steps to
find the best value of E – the one with the lowest p value. The Look-Elsewhere
Effect thus pushes the mean of the p value distribution downwards, as can be
seen in Figure 35 for his unbinned search. Stefan corrects these by running a
Monte Carlo simulation of the null hypothesis and seeking a peak at all E in
each one, making a distribution of the LEE-biased p values, and evaluates a
new cut that gives an expected global error rate of 1%. He also corrects the p
values using this Monte Carlo simulation – it is these corrected p values that
are shown in Figures 36 and 40.

Table 11 lists the error rates in the challenge datasets for Stefan’s unbinned
solution, and Table 12 lists the same information for Stefan’s binned solution.
The Type-I error rates are not measurably different from 1%, as desired. The
performances are similar between the binned submission and the unbinned sub-
mission.
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Table 11: Problem 1 performance evaluation for Stefan Schmitt’s unbinned solution. The uncertainties quoted are the Gaussian
approximation to binomial uncertainties,

√

f(1 − f)/n. See the caption of Table 3 for definitions of the columns.

Category Etrue Dtrue nrep ndisc fdisc nEcorr fEcorr nDcorr fDcorr 〈Ewid〉 〈Dwid〉
1 — 0.00 15400 172 0.0112 ± 0.0008 — — 40 0.2326 0.0419 502.3421
2 0.50 83.78 200 24 0.1200 ± 0.0230 17 0.7083 21 0.8750 0.0481 91.8503
3 0.38 265.96 200 114 0.5700 ± 0.0350 98 0.8596 65 0.5702 0.0418 181.2448
4 0.10 1010.65 200 90 0.4500 ± 0.0352 79 0.8778 50 0.5556 0.0358 829.2986
5 0.10 478.73 200 9 0.0450 ± 0.0147 6 0.6667 7 0.7778 0.0383 902.7023
6 0.66 66.49 200 69 0.3450 ± 0.0336 57 0.8261 43 0.6232 0.0428 48.0288
7 0.78 39.89 200 73 0.3650 ± 0.0340 50 0.6849 50 0.6849 0.0464 44.0940
8 0.10 744.69 200 30 0.1500 ± 0.0252 25 0.8333 23 0.7667 0.0367 829.5305
9 0.50 136.97 200 109 0.5450 ± 0.0352 96 0.8807 70 0.6422 0.0422 101.0201
10 0.90 15.29 200 19 0.0950 ± 0.0207 6 0.3158 13 0.6842 0.0410 22.8564
11 0.50 190.16 200 156 0.7800 ± 0.0293 141 0.9038 87 0.5577 0.0391 104.3673
12 0.14 664.90 200 45 0.2250 ± 0.0295 34 0.7556 37 0.8222 0.0384 653.5959
13 0.50 163.57 200 133 0.6650 ± 0.0334 111 0.8346 62 0.4662 0.0405 100.0957
14 0.38 531.92 200 199 0.9950 ± 0.0050 188 0.9447 97 0.4874 0.0318 184.5835
15 0.14 1196.83 200 182 0.9100 ± 0.0202 171 0.9396 84 0.4615 0.0347 638.5347
16 0.50 110.37 200 65 0.3250 ± 0.0331 50 0.7692 51 0.7846 0.0443 98.8377
17 0.10 1276.62 200 140 0.7000 ± 0.0324 118 0.8429 72 0.5143 0.0348 814.2061
18 0.90 20.61 200 55 0.2750 ± 0.0316 30 0.5455 35 0.6364 0.0455 22.4458
19 0.66 132.98 200 184 0.9200 ± 0.0192 142 0.7717 76 0.4130 0.0375 60.1174
20 0.90 12.63 200 24 0.1200 ± 0.0230 13 0.5417 13 0.5417 0.0486 55.7148
21 0.90 17.95 200 37 0.1850 ± 0.0275 17 0.4595 21 0.5676 0.0440 24.9794
22 0.90 23.27 200 50 0.2500 ± 0.0306 30 0.6000 44 0.8800 0.0443 23.1247
23 0.78 79.79 200 157 0.7850 ± 0.0290 119 0.7580 67 0.4268 0.0406 41.1542
24 0.10 1542.58 200 178 0.8900 ± 0.0221 168 0.9438 82 0.4607 0.0319 832.7157
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Table 12: Problem 1 performance evaluation for Stefan Schmitt’s binned solution. The uncertainties quoted are the Gaussian
approximation to binomial uncertainties,

√

f(1 − f)/n. See the caption of Table 3 for definitions of the columns.

Category Etrue Dtrue nrep ndisc fdisc nEcorr fEcorr nDcorr fDcorr 〈Ewid〉 〈Dwid〉
1 — 0.00 15400 169 0.0110 ± 0.0008 — — 0 0.0000 0.0416 397.1595
2 0.50 83.78 200 21 0.1050 ± 0.0217 16 0.7619 14 0.6667 0.0477 119.0175
3 0.38 265.96 200 123 0.6150 ± 0.0344 105 0.8537 80 0.6504 0.0426 192.0853
4 0.10 1010.65 200 77 0.3850 ± 0.0344 69 0.8961 55 0.7143 0.0355 766.9265
5 0.10 478.73 200 7 0.0350 ± 0.0130 5 0.7143 2 0.2857 0.0400 714.8434
6 0.66 66.49 200 71 0.3550 ± 0.0338 60 0.8451 55 0.7746 0.0453 75.2635
7 0.78 39.89 200 70 0.3500 ± 0.0337 50 0.7143 47 0.6714 0.0465 68.3524
8 0.10 744.69 200 34 0.1700 ± 0.0266 27 0.7941 20 0.5882 0.0363 761.5689
9 0.50 136.97 200 109 0.5450 ± 0.0352 98 0.8991 82 0.7523 0.0425 127.4503
10 0.90 15.29 200 24 0.1200 ± 0.0230 10 0.4167 17 0.7083 0.0429 43.2923
11 0.50 190.16 200 157 0.7850 ± 0.0290 144 0.9172 118 0.7516 0.0397 134.7139
12 0.14 664.90 200 47 0.2350 ± 0.0300 36 0.7660 30 0.6383 0.0384 595.2405
13 0.50 163.57 200 129 0.6450 ± 0.0338 107 0.8295 86 0.6667 0.0406 129.2215
14 0.38 531.92 200 199 0.9950 ± 0.0050 189 0.9497 144 0.7236 0.0321 222.3337
15 0.14 1196.83 200 180 0.9000 ± 0.0212 171 0.9500 118 0.6556 0.0351 588.5422
16 0.50 110.37 200 68 0.3400 ± 0.0335 57 0.8382 46 0.6765 0.0456 125.5051
17 0.10 1276.62 200 135 0.6750 ± 0.0331 116 0.8593 91 0.6741 0.0344 734.1825
18 0.90 20.61 200 59 0.2950 ± 0.0322 29 0.4915 37 0.6271 0.0461 48.6783
19 0.66 132.98 200 185 0.9250 ± 0.0186 145 0.7838 124 0.6703 0.0380 95.6798
20 0.90 12.63 200 26 0.1300 ± 0.0238 13 0.5000 9 0.3462 0.0497 71.5992
21 0.90 17.95 200 44 0.2200 ± 0.0293 23 0.5227 27 0.6136 0.0449 47.2139
22 0.90 23.27 200 59 0.2950 ± 0.0322 33 0.5593 38 0.6441 0.0453 48.3993
23 0.78 79.79 200 156 0.7800 ± 0.0293 125 0.8013 111 0.7115 0.0410 73.0747
24 0.10 1542.58 200 178 0.8900 ± 0.0221 171 0.9607 118 0.6629 0.0319 757.0254
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Figure 33: Distributions of the best fit values of E, the signal peak position
in Problem 1, for challenge datasets for which Stefan claims evidence with a
claimed Type-I error rate of 1%, split up by signal test category, for his unbinned
solution. The categories are listed in Table 1; the first category corresponds to
the null hypothesis.
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Figure 34: Distributions of the upper and lower interval edges for D, the signal
rate parameter for Problem 1, for challenge datasets for which Stefan claims
evidence with a claimed Type-I error rate of 1%, split up by signal test cate-
gory, for his unbinned solution. The categories are listed in Table 1; the first
category corresponds to the null hypothesis. The red dashed histograms show
the distributions of the lower edge of the reported intervals, and the blue solid
histograms show the distribution of the upper edges. The black lines show the
true signal position. Overflows are collected in the last bin. The vertical scales
on this plot are set by the red dashed histograms – the blue histograms may
extend above the tops of the panels.
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Figure 35: Distribution of the quoted p value in null hypothesis challenge
datasets for Stefan’s unbinned solution to Problem 1, before correcting for the
Look-Elsewhere Effect.
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Figure 36: Distribution of the quoted p value in null hypothesis challenge
datasets for Stefan’s unbinned solution to Problem 1, after correcting for the
Look-Elsewhere Effect using a Monte Carlo simulation.
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Figure 37: Distributions of the upper and lower interval edges for E, the sig-
nal position parameter for Problem 1, for challenge datasets for which Stefan
claims evidence with a claimed Type-I error rate of 1%, split up by signal test
category, for his unbinned solution. The categories are listed in Table 1; the
first category corresponds to the null hypothesis. The red dashed histograms
show the distributions of the lower edge of the reported intervals, and the blue
solid histograms show the distribution of the upper edges. The black lines show
the true signal position.
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Figure 38: Distributions of the best fit values of E, the signal peak position
in Problem 1, for challenge datasets for which Stefan claims evidence with a
claimed Type-I error rate of 1%, split up by signal test category, for his binned
solution. The categories are listed in Table 1; the first category corresponds to
the null hypothesis.
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Figure 39: Distributions of the upper and lower interval edges for D, the signal
rate parameter for Problem 1, for challenge datasets for which Stefan claims
evidence with a claimed Type-I error rate of 1%, split up by signal test cat-
egory, for his binned solution. The categories are listed in Table 1; the first
category corresponds to the null hypothesis. The red dashed histograms show
the distributions of the lower edge of the reported intervals, and the blue solid
histograms show the distribution of the upper edges. The black lines show the
true signal position. Overflows are collected in the last bin. The vertical scales
on this plot are set by the red dashed histograms – the blue histograms may
extend above the tops of the panels.
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Figure 40: Distribution of the quoted p value in null hypothesis challenge
datasets for Stefan’s binned solution to Problem 1.
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Figure 41: Distributions of the upper and lower interval edges for E, the sig-
nal position parameter for Problem 1, for challenge datasets for which Stefan
claims evidence with a claimed Type-I error rate of 1%, split up by signal test
category, for his binned solution. The categories are listed in Table 1; the first
category corresponds to the null hypothesis. The red dashed histograms show
the distributions of the lower edge of the reported intervals, and the blue solid
histograms show the distribution of the upper edges. The black lines show the
true signal position.
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2.2.10 From Stefano Andreon

For Challenge Problem #1, Stefano Andreon provided a solution based on a
Bayesian computation with improper uniform priors on A and D, with a zero
value for the prior for negative (unphysical) values, and an uniform prior, be-
tween 0 and 1, on E. Stefano computes p(D = 0|data), up to a multiplicative
factor, and selects simulated datasets for discovery claims if p(D = 0|data) <
3 × 10−3 for the first solution, and p(D = 0|data) < 4 × 10−3 for the second.
The Type-I error rate will be higher for the second set, but the power will also
be larger. Stefano did not compute the power of his test. Due to time and
computing limitations, Stefano analyzed only the first 10000 simulated datasets
of Problem 1.

Table 13 lists the error rates in the challenge datasets for Stefano’s p(D =
0|data) < 3×10−3 solution, and Table 14 lists the same information for Stefano’s
p(D = 0|data) < 4×10−3 solution. In both cases, the Type-I error rates exceed
1%, although for the solution with p(D = 0|data) < 3 × 10−3 solution, the
significance of the claim that the Type-I error rate is too high is only ∼ 2σ.
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Table 13: Problem 1 performance evaluation for Stefano Andreon’s p(D = 0|data) < 3 × 10−3 solution. The uncertainties
quoted are the Gaussian approximation to binomial uncertainties,

√

f(1 − f)/n. See the caption of Table 3 for definitions of
the columns.

Category Etrue Dtrue nrep ndisc fdisc nEcorr fEcorr nDcorr fDcorr 〈Ewid〉 〈Dwid〉
1 — 0.00 7685 97 0.0126 ± 0.0013 — — 0 0.0000 0.0361 413.9379
2 0.50 83.78 94 8 0.0851 ± 0.0288 5 0.6250 0 0.0000 0.0365 152.4175
3 0.38 265.96 103 65 0.6311 ± 0.0475 44 0.6769 50 0.7692 0.0266 207.3465
4 0.10 1010.65 106 51 0.4811 ± 0.0485 41 0.8039 48 0.9412 0.0260 693.8154
5 0.10 478.73 103 6 0.0583 ± 0.0231 3 0.5000 2 0.3333 0.0307 684.7844
6 0.66 66.49 101 19 0.1881 ± 0.0389 14 0.7368 11 0.5789 0.0324 89.5388
7 0.78 39.89 96 13 0.1354 ± 0.0349 7 0.5385 0 0.0000 0.0310 122.8128
8 0.10 744.69 103 27 0.2621 ± 0.0433 18 0.6667 25 0.9259 0.0394 655.4998
9 0.50 136.97 107 51 0.4766 ± 0.0483 29 0.5686 35 0.6863 0.0353 136.4956
10 0.90 15.29 110 0 0.0000 ± 0.0000 0 — 0 — — —
11 0.50 190.16 105 86 0.8190 ± 0.0376 59 0.6860 77 0.8953 0.0246 138.1537
12 0.14 664.90 105 42 0.4000 ± 0.0478 32 0.7619 38 0.9048 0.0282 561.0679
13 0.50 163.57 112 69 0.6161 ± 0.0460 42 0.6087 53 0.7681 0.0343 137.7171
14 0.38 531.92 96 96 1.0000 ± 0.0000 66 0.6875 63 0.6562 0.0165 229.3821
15 0.14 1196.83 111 108 0.9730 ± 0.0154 82 0.7593 60 0.5556 0.0215 575.5975
16 0.50 110.37 101 28 0.2772 ± 0.0445 17 0.6071 14 0.5000 0.0295 129.5641
17 0.10 1276.62 89 68 0.7640 ± 0.0450 46 0.6765 42 0.6176 0.0237 700.2609
18 0.90 20.61 88 0 0.0000 ± 0.0000 0 — 0 — — —
19 0.66 132.98 106 95 0.8962 ± 0.0296 62 0.6526 81 0.8526 0.0250 97.2977
20 0.90 12.63 101 1 0.0099 ± 0.0099 0 0.0000 0 0.0000 0.0225 737.3783
21 0.90 17.95 83 1 0.0120 ± 0.0120 1 1.0000 0 0.0000 0.0317 69.6021
22 0.90 23.27 107 2 0.0187 ± 0.0131 1 0.5000 0 0.0000 0.0328 72.0091
23 0.78 79.79 98 65 0.6633 ± 0.0477 49 0.7538 52 0.8000 0.0288 80.2345
24 0.10 1542.58 91 82 0.9011 ± 0.0313 66 0.8049 29 0.3537 0.0202 705.2245
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Table 14: Problem 1 performance evaluation for Stefano Andreon’s p(D = 0|data) < 4 × 10−3 solution. The uncertainties
quoted are the Gaussian approximation to binomial uncertainties,

√

f(1 − f)/n. See the caption of Table 3 for definitions of
the columns.

Category Etrue Dtrue nrep ndisc fdisc nEcorr fEcorr nDcorr fDcorr 〈Ewid〉 〈Dwid〉
1 — 0.00 7685 147 0.0191 ± 0.0016 — — 0 0.0000 0.0426 438.8728
2 0.50 83.78 94 11 0.1170 ± 0.0332 8 0.7273 2 0.1818 0.0664 149.4704
3 0.38 265.96 103 69 0.6699 ± 0.0463 48 0.6957 54 0.7826 0.0289 207.4382
4 0.10 1010.65 106 55 0.5189 ± 0.0485 44 0.8000 52 0.9455 0.0266 699.9116
5 0.10 478.73 103 7 0.0680 ± 0.0248 3 0.4286 3 0.4286 0.0315 664.8088
6 0.66 66.49 101 23 0.2277 ± 0.0417 18 0.7826 15 0.6522 0.0472 91.3774
7 0.78 39.89 96 18 0.1875 ± 0.0398 11 0.6111 0 0.0000 0.0330 112.8416
8 0.10 744.69 103 37 0.3592 ± 0.0473 26 0.7027 34 0.9189 0.0502 668.2768
9 0.50 136.97 107 51 0.4766 ± 0.0483 29 0.5686 35 0.6863 0.0353 136.4956
10 0.90 15.29 110 0 0.0000 ± 0.0000 0 — 0 — — —
11 0.50 190.16 105 86 0.8190 ± 0.0376 59 0.6860 77 0.8953 0.0246 138.1537
12 0.14 664.90 105 46 0.4381 ± 0.0484 36 0.7826 42 0.9130 0.0298 568.0446
13 0.50 163.57 112 72 0.6429 ± 0.0453 43 0.5972 56 0.7778 0.0343 137.2235
14 0.38 531.92 96 96 1.0000 ± 0.0000 66 0.6875 63 0.6562 0.0165 229.3821
15 0.14 1196.83 111 109 0.9820 ± 0.0126 83 0.7615 60 0.5505 0.0216 575.6018
16 0.50 110.37 101 29 0.2871 ± 0.0450 17 0.5862 15 0.5172 0.0441 144.0979
17 0.10 1276.62 89 71 0.7978 ± 0.0426 49 0.6901 42 0.5915 0.0241 702.0446
18 0.90 20.61 88 2 0.0227 ± 0.0159 1 0.5000 0 0.0000 0.0394 372.0735
19 0.66 132.98 106 97 0.9151 ± 0.0271 63 0.6495 83 0.8557 0.0253 97.3551
20 0.90 12.63 101 2 0.0198 ± 0.0139 0 0.0000 0 0.0000 0.0271 452.8327
21 0.90 17.95 83 1 0.0120 ± 0.0120 1 1.0000 0 0.0000 0.0317 69.6021
22 0.90 23.27 107 2 0.0187 ± 0.0131 1 0.5000 0 0.0000 0.0328 72.0091
23 0.78 79.79 98 72 0.7347 ± 0.0446 54 0.7500 59 0.8194 0.0306 82.6812
24 0.10 1542.58 91 83 0.9121 ± 0.0297 67 0.8072 29 0.3494 0.0205 705.8394
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Figure 42: Distribution of Stefano’s p(D = 0|data) value, up to a fixed multi-
plicative factor, in null hypothesis Problem 1 challenge datasets. Stefano places
cuts of 3 × 10−3 and 4 × 10−3 for his two solutions to Problem 1.
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Figure 43: Distributions of the best fit values of E, the signal peak position
in Problem 1, for challenge datasets for which Stefano claims evidence, split
up by signal test category, for his solution with p(D = 0|data) < 3 × 10−3.
The categories are listed in Table 1; the first category corresponds to the null
hypothesis.
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Figure 44: Distributions of the upper and lower interval edges for D, the signal
rate parameter for Problem 1, for challenge datasets for which Stefano claims
evidence, split up by signal test category, for his solution with p(D = 0|data) <
3 × 10−3. The categories are listed in Table 1; the first category corresponds
to the null hypothesis. The red dashed histograms show the distributions of
the lower edge of the reported intervals, and the blue solid histograms show the
distribution of the upper edges. The black lines show the true signal position.
Overflows are collected in the last bin. The vertical scales on this plot are set
by the red dashed histograms – the blue histograms may extend above the tops
of the panels.
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Figure 45: Distributions of the upper and lower interval edges for E, the signal
position parameter for Problem 1, for challenge datasets for which Stefano claims
evidence, split up by signal test category, for his solution with p(D = 0|data) <
3 × 10−3. The categories are listed in Table 1; the first category corresponds
to the null hypothesis. The red dashed histograms show the distributions of
the lower edge of the reported intervals, and the blue solid histograms show the
distribution of the upper edges. The black lines show the true signal position.
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Figure 46: Distributions of the best fit values of E, the signal peak position
in Problem 1, for challenge datasets for which Stefano claims evidence, split
up by signal test category, for his solution with p(D = 0|data) < 4 × 10−3.
The categories are listed in Table 1; the first category corresponds to the null
hypothesis.
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Figure 47: Distributions of the upper and lower interval edges for D, the signal
rate parameter for Problem 1, for challenge datasets for which Stefano claims
evidence, split up by signal test category, for his solution with p(D = 0|data) <
4 × 10−3. The categories are listed in Table 1; the first category corresponds
to the null hypothesis. The red dashed histograms show the distributions of
the lower edge of the reported intervals, and the blue solid histograms show the
distribution of the upper edges. The black lines show the true signal position.
Overflows are collected in the last bin. The vertical scales on this plot are set
by the red dashed histograms – the blue histograms may extend above the tops
of the panels.
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Figure 48: Distributions of the upper and lower interval edges for E, the signal
position parameter for Problem 1, for challenge datasets for which Stefano claims
evidence, split up by signal test category, for his solution with p(D = 0|data) <
4 × 10−3. The categories are listed in Table 1; the first category corresponds
to the null hypothesis. The red dashed histograms show the distributions of
the lower edge of the reported intervals, and the blue solid histograms show the
distribution of the upper edges. The black lines show the true signal position.
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2.3 Performance Summary Plots

The authors would like to thank Ofer Vitells, who collected the discovery frac-
tions and coverages for the D and E parameters into a series of plots, labeled
by the participant. These are shown in Figure 49, and are the discovery proba-
bilities for each of the signal hypotheses, including the null hypothesis (D=0).
The first graph shows the fraction of simulated datasets a discovery is claimed,
and the datasets are ordered by the average fraction, averaged over the partici-
pants. The second graph shows the fraction of simulated datasets in which the
injected signal rate parameter D lies within the 68% intervals quoted by the
participants, separately for each of the signal models. The third graph shows
the fraction of simulated datasets in which the peak position parameter E lies
within the quoted intervals. The signal model number on the horizontal axes of
these graphs is the same for each of the three graphs, but differs from that in
Table 1.
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Figure 49: Top graph: The fraction of simulated datasets for which a discovery
is claimed, separately for the null and test hypotheses. The hypothesis index
on the abscissa is sorted by the average discovery probability. Middle and lower
graphs: coverage fractions for the D and E parameters, respectively, with the
same abscissa as the top graph.
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Table 15: Problem 2 dataset categories – signal rates and how many repetitions
of each were represented in the challenge datasets.

Category # Input Signal nrep

1 0.00 17600
2 75.00 400
3 50.00 400
4 25.00 400
5 100.00 400
6 150.00 400
7 125.00 400

3 Challenge Problem #2

3.1 Simulated Datasets

Unlike Problem 1, Problem 2 parameterizes the predictions of the signal and
background yields using finite samples of Monte Carlo. In a real high-energy
physics experiment, sometimes samples of collider data are used instead. From
a statistical standpoint, these are very similar and are treated identically. Often
there is an extrapolation uncertainty associated with using a different sample of
data which pass different selection requirements, and which are used to predict
the background in the sample passing the signal requirements, and Monte Carlos
are similarly fraught with uncertainty in their predictions.

Nonetheless, the simulated datasets and the Monte Carlo samples were in
fact generated from smooth distributions for the marks. The distribution of the
marks for Background 1 are given by

x = max(1.0, 1.4y2.74e−y/3), (2)

where y is uniformly distributed on the interval (0, 1]. Background 2 was gener-
ated with a uniform distribution. The signal distribution was generated using

x = z0.21, (3)

where z is uniformly distributed on the interval (0, 1].
In each of the challenge datasets, a rate was chosen for Background 1, Back-

ground 2, and the signal, based on the hypothesis under test. The seven hy-
pothesis categories are listed in Table 15. A Poisson random number was chosen
using the randomly chosen rates, and then marks were generated using the pre-
scriptions described above. The resulting lists of marks were then shuffled. The
list of which simulated dataset was drawn from which signal test case was also
shuffled.
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Table 16: Listing of the Type-I error rates, and the estimated and measured
correct-discovery rates for the three scenarios of Problem 2. Stefan Schmitt
states that the power of his 50-bin test is similar to that of his 25-bin test.

Contributor Type-I Error Rate Signal = 75 Events
Measured Claimed Measured

Tom Junk 0.0068 ± 0.0006 0.865 0.870± 0.017
Wolfgang Rolke 0.0256 ± 0.0012 0.88 0.8500 ± 0.018
Stanford Challenge Team 0.0389 ± 0.0015 0.84 0.9100 ± 0.0143
Eilam Gross &
Ofer Vitells 0.0107 ± 0.0008 0.815 0.7725 ± 0.0210
Valentin Niess 0.0085 ± 0.0007 0.761± 0.001 0.7125 ± 0.0226
Stefan Schmitt
25 Bins 0.0047 ± 0.0005 0.85 0.8200 ± 0.0192
50 Bins 0.0047 ± 0.0005 0.8250 ± 0.0190

Doug Applegate &
Matt Bellis 0.0168 ± 0.0010 0.95 0.8950 ± 0.0153

3.2 Solutions Received

Table 16 lists the contributors who provides solutions to Problem 2, the fractions
of null-hypothesis simulated datasets that resulted in a discovery claim, and the
fractions of simulated datasets that were in the power test samples that resulted
in discovery claims, compared with the estimations provided by the participants.
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3.2.1 From Tom Junk

Tom provided a solution to Problem 2 using a binned likelihood technique. Aside
from the binning, and the lack of a peak position parameter, the method used
is very similar to the solution used for Problem 1. An additional feature is the
limited sample size of the Monte Carlo used to predict backgrounds. This adds
an extra nuisance parameter for each bin for each sample – signal, background
1, and background 2. Tom fluctuates all of the nuisance parameters in each of
his simulated data samples used to characterize the test statistic. This differs
from the prior used to generate the datasets in that the characterizing datasets
are binned, and the priors in each bin are taken as Gaussian approximations to
the distributions of the bin-by-bin parameters. A possibly better choice is to
use a Gamma prior in each bin for the bin-by-bin uncertainties, which is the
Bayesian result using the finite Monte Carlo and a uniform prior in the unknown
true background and signal rates. This however biases up the prediction in each
bin. Tom fit the two background rates, but did not fit the separate bin-by-
bin uncertainties, to get values of the −2 lnQ test statistic for the simulated
datasets and the challenge datasets.

For the signal rate intervals, Tom performed a Bayesian calculation, inte-
grating the likelihood function times a uniform prior in the signal rate over the
uncertain parameters (this time, the two background rates and the bin-by-bin
uncertainties). The 68% credibility interval is computed as the shortest interval
containing 68% of the integral of the posterior.

Table 17 lists the discovery rates for each of the seven scenarios embedded
in Problem 2’s test data. Tom’s Type-I error rate is (0.68± 0.06)%, computed
on simulated datasets with no signal present. The fit signal rate measurements
also all cover the true signal rate at more than the 68% level, except for the
smallest signal case, in which all simulated datasets which had a sufficiently
small p value gave too large a fitted cross section. The problem may have been
better formulated if cross section measurements were requested even if evidence
for a signal is not claimed, although this situation does not arise frequently in
particle physics. Thus there is a natural bias towards larger signal rate fits for
experiments reporting evidence of new signals, as those experiments failing to
obtain evidence do not publish cross sections.
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Figure 50: Distributions of the upper and lower interval edges for the signal
rate for Problem 2, for challenge datasets for which Tom claims evidence with a
claimed Type-I error rate of 1%, split up by signal test category. The categories
are listed in Table 15; the first category corresponds to the null hypothesis. The
red dashed histograms show the distributions of the lower edge of the reported
intervals, and the blue solid histograms show the distribution of the upper edges.
The black lines show the true signal position. Overflows are collected in the last
bin. The vertical scales on this plot are set by the red dashed histograms – the
blue histograms may extend above the tops of the panels.
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datasets for Tom’s solution to Problem 2.
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Table 17: Problem 2 performance evaluation for Tom Junk’s solution, showing
the Type-I and 1-Type-II error rates. The categories are listed in Table 15.

Category Sigtrue nrep ndisc fdisc nScorr fScorr 〈Swid〉
1 0.00 17600 120 0.0068 ± 0.0006 0 0.0000 44.7819
2 75.00 400 348 0.8700 ± 0.0168 286 0.8218 45.9750
3 50.00 400 205 0.5125 ± 0.0250 132 0.6439 44.5449
4 25.00 400 49 0.1225 ± 0.0164 0 0.0000 42.9888
5 100.00 400 396 0.9900 ± 0.0050 286 0.7222 47.5670
6 150.00 400 400 1.0000 ± 0.0000 270 0.6750 50.4234
7 125.00 400 400 1.0000 ± 0.0000 282 0.7050 48.9148
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Table 18: Problem 2 performance evaluation for Wolfgang Rolke’s solution,
showing the Type-I and 1-Type-II error rates. The categories are listed in
Table 15.

Category Sigtrue nrep ndisc fdisc nScorr fScorr 〈Swid〉
1 0.00 17600 451 0.0256 ± 0.0012 0 0.0000 44.8011
2 75.00 400 340 0.8500 ± 0.0179 216 0.6353 49.4226
3 50.00 400 235 0.5875 ± 0.0246 100 0.4255 47.4689
4 25.00 400 90 0.2250 ± 0.0209 0 0.0000 46.4322
5 100.00 400 395 0.9875 ± 0.0056 256 0.6481 50.9408
6 150.00 400 400 1.0000 ± 0.0000 225 0.5625 53.5235
7 125.00 400 399 0.9975 ± 0.0025 240 0.6015 52.4113

3.2.2 From Wolfgang Rolke

Wolfgang Rolke provided a solution to Problem 2 using a likelihood ratio test
similar to that used in Problem 1. Since the background and signal predictions
are Monte Carlo based, Wolfgang tried a parametric description, fitting Beta
functions to the signal and background shapes, and a non-parametric descrip-
tion, which bins the results. Semi–parametric solutions are also possible, in
which some components are parameterized and others are binned. Wolfgang
found very similar performance for the the nonparametric and parametric ap-
proaches, and he chooses his parametric solution. Background 1 requires a little
effort to get the low end and the high end to fit well, as there is so much of
it populating the low end. The distribution of the log likelihood ratio λ is fit
to a χ2 distribution with one degree of freedom. We expect this since the test
hypothesis has one extra free parameter, the signal rate, compared with the null
hypothesis.

Table 18 lists the discovery rates for each of the seven scenarios embedded in
Problem 2’s test data. Wolfgang’s Type-I error rate is (2.56±0.12)%, computed
on simulated datasets with no signal present. We can see that the p value
distribution rises at low p values, consistent with the larger-than-desired Type-I
error rate.
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Figure 52: Distributions of the upper and lower interval edges for the signal rate
for Problem 2, for challenge datasets for which Wolfgang claims evidence with a
claimed Type-I error rate of 1%, split up by signal test category. The categories
are listed in Table 15; the first category corresponds to the null hypothesis. The
red dashed histograms show the distributions of the lower edge of the reported
intervals, and the blue solid histograms show the distribution of the upper edges.
The black lines show the true signal position. Overflows are collected in the last
bin. The vertical scales on this plot are set by the red dashed histograms – the
blue histograms may extend above the tops of the panels.
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Figure 53: Distribution of the quoted p value in null hypothesis challenge
datasets for Wolfgang’s solution to Problem 2.
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Table 19: Problem 2 performance evaluation for the SCT’s solution, showing
the Type-I and 1-Type-II error rates. The categories are listed in Table 15.

Category Sigtrue nrep ndisc fdisc nScorr fScorr 〈Swid〉
1 0.00 17600 685 0.0389 ± 0.0015 0 0.0000 27.4298
2 75.00 400 364 0.9100 ± 0.0143 181 0.4973 32.4090
3 50.00 400 265 0.6625 ± 0.0236 102 0.3849 30.4449
4 25.00 400 116 0.2900 ± 0.0227 4 0.0345 28.6076
5 100.00 400 397 0.9925 ± 0.0043 204 0.5139 34.8550
6 150.00 400 400 1.0000 ± 0.0000 193 0.4825 38.8669
7 125.00 400 399 0.9975 ± 0.0025 213 0.5338 36.9672

3.2.3 From the Stanford Challenge Team

The SCT provided a solution to Problem 2 using a likelihood ratio test similar to
that used in Problem 1, comparing a three-component fit to a two-component fit
(three including the signal, and two backgrounds are fit in either hypothesis).
The distributions of the marks for the two background components and the
signal component are approximated with Beta distributions.

Table 19 lists the discovery rates for each of the seven scenarios embedded
in Problem 2’s test data. The SCT’s Type-I error rate is 0.0389 ± 0.0015, com-
puted on simulated datasets with no signal present, well in excess of the desired
1%. Two interesting features of the p value distribution, shown in Figure 55,
are that the p value never exceeds 0.5 (the top half of the distribution appears
to be concentrated at p = 0.5), and that the distribution of p rises at low p,
thus causing concern for the lack of coverage.
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Figure 54: Distributions of the upper and lower interval edges for the signal rate
for Problem 2, for challenge datasets for which the SCT claims evidence with a
claimed Type-I error rate of 1%, split up by signal test category. The categories
are listed in Table 15; the first category corresponds to the null hypothesis. The
red dashed histograms show the distributions of the lower edge of the reported
intervals, and the blue solid histograms show the distribution of the upper edges.
The black lines show the true signal position. Overflows are collected in the last
bin. The vertical scales on this plot are set by the red dashed histograms – the
blue histograms may extend above the tops of the panels.
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Figure 55: Distribution of the quoted p value in null hypothesis challenge
datasets for the SCT’s solution to Problem 2.
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Table 20: Problem 2 performance evaluation for Eilam and Ofer’s solution,
showing the Type-I and 1-Type-II error rates. The categories are listed in
Table 15.

Category Sigtrue nrep ndisc fdisc nScorr fScorr 〈Swid〉
1 0.00 17600 188 0.0107 ± 0.0008 0 0.0000 44.5158
2 75.00 400 309 0.7725 ± 0.0210 262 0.8479 49.1210
3 50.00 400 182 0.4550 ± 0.0249 109 0.5989 47.2930
4 25.00 400 54 0.1350 ± 0.0171 0 0.0000 45.3404
5 100.00 400 382 0.9550 ± 0.0104 276 0.7225 50.8607
6 150.00 400 400 1.0000 ± 0.0000 279 0.6975 54.0924
7 125.00 400 397 0.9925 ± 0.0043 278 0.7003 52.4133

3.2.4 From Eilam Gross and Ofer Vitells

Eilam and Ofer provided a solution to Problem 2 using a likelihood ratio test
statistic similar to that of Problem 1, except in this case the likelihood ratio is
binned, and there is no Look Elsewhere Effect.

Table 20 lists the discovery rates for each of the seven scenarios embedded
in Problem 2’s test data. Eilam and Ofer’s Type-I error rate is 0.0107 ± 0.0008
computed on simulated datasets with no signal present, which is not measurably
different from the desired value of 1%.
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Figure 56: Distributions of the upper and lower interval edges for the signal
rate for Problem 2, for challenge datasets for which Eilam and Ofer claim evi-
dence with a claimed Type-I error rate of 1%, split up by signal test category.
The categories are listed in Table 15; the first category corresponds to the null
hypothesis. The red dashed histograms show the distributions of the lower edge
of the reported intervals, and the blue solid histograms show the distribution
of the upper edges. The black lines show the true signal position. Overflows
are collected in the last bin. The vertical scales on this plot are set by the
red dashed histograms – the blue histograms may extend above the tops of the
panels.
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Figure 57: Distribution of the quoted p value in null hypothesis challenge
datasets for the Eilam and Ofer’s solution to Problem 2.
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Table 21: Problem 2 performance evaluation for Valentin Niess’s solution, show-
ing the Type-I and 1-Type-II error rates. The categories are listed in Table 15.

Category Sigtrue nrep ndisc fdisc nScorr fScorr 〈Swid〉
1 0.00 17600 150 0.0085 ± 0.0007 0 0.0000 42.4200
2 75.00 400 285 0.7125 ± 0.0226 193 0.6772 52.3930
3 50.00 400 156 0.3900 ± 0.0244 55 0.3526 47.5449
4 25.00 400 47 0.1175 ± 0.0161 0 0.0000 41.5106
5 100.00 400 366 0.9150 ± 0.0139 261 0.7131 54.7268
6 150.00 400 400 1.0000 ± 0.0000 270 0.6750 54.9250
7 125.00 400 391 0.9775 ± 0.0074 269 0.6880 54.7442

3.2.5 From Valentin Niess

Valentin Niess provided a solution to Problem 2 using a Kolmogorov-Smirnov
test, parameterizing the signal and background cumulative distributions with
power-law functions of the marks. The KS test statistic is minimized over the
uncertain values of the signal and background rates numerically using the PORT
library.

Table 21 lists the discovery rates for each of the seven scenarios embedded in
Problem 2’s test data. Valentin’s Type-I error rate is 0.0085 ± 0.0007 computed
on simulated datasets with no signal present, which is comfortably less than 1%.

92



0

20

40

60

0 50 100 150 200
0

25

50

75

100

0 100 200 300

0

10

20

30

40

0 50 100 150 200
0

2

4

6

8

10

0 20 40 60 80 100

0

50

100

150

0 100 200 300 400
0

50

100

150

0 200 400 600

0

50

100

150

0 200 400

1

S
im

u
la

te
d

 D
at

as
et

s

2

3 4

5 6

7

Signal Rate (events)

Figure 58: Distributions of the upper and lower interval edges for the signal rate
for Problem 2, for challenge datasets for which Valentin claims evidence with a
claimed Type-I error rate of 1%, split up by signal test category. The categories
are listed in Table 15; the first category corresponds to the null hypothesis. The
red dashed histograms show the distributions of the lower edge of the reported
intervals, and the blue solid histograms show the distribution of the upper edges.
The black lines show the true signal position. Overflows are collected in the last
bin. The vertical scales on this plot are set by the red dashed histograms – the
blue histograms may extend above the tops of the panels.
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Figure 59: Distribution of the quoted test statistic value divided by the critical
value in null hypothesis challenge datasets for Valentin’s solution to Problem 2.
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Table 22: Problem 2 performance evaluation for Stefan Schmitt’s 25-bin solu-
tion, showing the Type-I and 1-Type-II error rates. The categories are listed in
Table 15.

Category Sigtrue nrep ndisc fdisc nScorr fScorr 〈Swid〉
1 0.00 17600 82 0.0047 ± 0.0005 2 0.0244 56.3457
2 75.00 400 328 0.8200 ± 0.0192 248 0.7561 51.3742
3 50.00 400 183 0.4575 ± 0.0249 140 0.7650 53.1921
4 25.00 400 35 0.0875 ± 0.0141 22 0.6286 54.5959
5 100.00 400 394 0.9850 ± 0.0061 284 0.7208 50.8824
6 150.00 400 400 1.0000 ± 0.0000 280 0.7000 53.1749
7 125.00 400 400 1.0000 ± 0.0000 288 0.7200 51.5327

Table 23: Problem 2 performance evaluation for Stefan Schmitt’s 50-bin solu-
tion, showing the Type-I and 1-Type-II error rates. The categories are listed in
Table 15.

Category Sigtrue nrep ndisc fdisc nScorr fScorr 〈Swid〉
1 0.00 17600 82 0.0047 ± 0.0005 2 0.0244 55.9555
2 75.00 400 330 0.8250 ± 0.0190 245 0.7424 51.2024
3 50.00 400 175 0.4375 ± 0.0248 133 0.7600 52.7358
4 25.00 400 34 0.0850 ± 0.0139 22 0.6471 54.5620
5 100.00 400 395 0.9875 ± 0.0056 278 0.7038 50.5337
6 150.00 400 400 1.0000 ± 0.0000 277 0.6925 52.7789
7 125.00 400 400 1.0000 ± 0.0000 287 0.7175 51.1493

3.2.6 From Stefan Schmitt

Stefan Schmitt provided a solution to Problem 2 using a weighted event-counting
technique. Two solutions were provided, one choosing 25 bins for the marks and
the other choosing 50 bins.

Table 22 lists the discovery rates for each of the seven scenarios embedded
in Problem 2’s test data, for the 25-bin solution, and Table 23 lists the same
information for Stefan’s 50-bin solution.
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Figure 60: Distributions of the upper and lower interval edges for the signal rate
for Problem 2, for challenge datasets for which Stefan claims evidence with a
claimed Type-I error rate of 1%, split up by signal test category, for his 25-bin
solution. The categories are listed in Table 15; the first category corresponds
to the null hypothesis. The red dashed histograms show the distributions of
the lower edge of the reported intervals, and the blue solid histograms show the
distribution of the upper edges. The black lines show the true signal position.
Overflows are collected in the last bin. The vertical scales on this plot are set
by the red dashed histograms – the blue histograms may extend above the tops
of the panels.
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Figure 61: Distribution of the quoted p value in null hypothesis challenge
datasets for Stefan’s 25-bin solution to Problem 2.

97



0

10

20

30

0 50 100 150 200
0

20

40

60

80

0 100 200 300

0

10

20

30

0 50 100 150 200
0

2

4

6

8

10

0 20 40 60 80 100

0

50

100

0 100 200 300 400
0

50

100

150

0 200 400 600

0

50

100

150

0 200 400

1

S
im

u
la

te
d

 D
at

as
et

s

2

3 4

5 6

7

Signal Rate (events)

Figure 62: Distributions of the upper and lower interval edges for the signal rate
for Problem 2, for challenge datasets for which Stefan claims evidence with a
claimed Type-I error rate of 1%, split up by signal test category, for his 50-bin
solution. The categories are listed in Table 15; the first category corresponds
to the null hypothesis. The red dashed histograms show the distributions of
the lower edge of the reported intervals, and the blue solid histograms show the
distribution of the upper edges. The black lines show the true signal position.
Overflows are collected in the last bin. The vertical scales on this plot are set
by the red dashed histograms – the blue histograms may extend above the tops
of the panels.
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Figure 63: Distribution of the quoted p value in null hypothesis challenge
datasets for Stefan’s 50-bin solution to Problem 2.
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Table 24: Problem 2 performance evaluation for Doug and Matt’s solution,
showing the Type-I and 1-Type-II error rates. The categories are listed in
Table 15.

Category Sigtrue nrep ndisc fdisc nScorr fScorr 〈Swid〉
1 0.00 17600 295 0.0168 ± 0.0010 22 0.0746 87.6877
2 75.00 400 358 0.8950 ± 0.0153 272 0.7598 74.3316
3 50.00 400 244 0.6100 ± 0.0244 154 0.6311 76.0376
4 25.00 400 81 0.2025 ± 0.0201 7 0.0864 71.6980
5 100.00 400 398 0.9950 ± 0.0035 291 0.7312 68.6577
6 150.00 400 400 1.0000 ± 0.0000 259 0.6475 77.7485
7 125.00 400 400 1.0000 ± 0.0000 286 0.7150 79.0725

3.2.7 From Matt Bellis

Doug Applegate and Matt Bellis provided a solution to Problem 2 using a
nearest neighbor approach to classify events, giving them probability weights to
have come from the three processes. The Monte Carlo samples are finite in size,
and thus a bootstrap technique is used.

Table 24 lists the discovery rates for each of the seven scenarios embedded
in Problem 2’s test data. Doug and Matt’s Type-I error rate is 0.0168 ± 0.0010,
computed on simulated datasets with no signal present.
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Figure 64: Distributions of the upper and lower interval edges for the signal
rate for Problem 2, for challenge datasets for which Doug and Matt claim evi-
dence with a claimed Type-I error rate of 1%, split up by signal test category.
The categories are listed in Table 15; the first category corresponds to the null
hypothesis. The red dashed histograms show the distributions of the lower edge
of the reported intervals, and the blue solid histograms show the distribution
of the upper edges. The black lines show the true signal position. Overflows
are collected in the last bin. The vertical scales on this plot are set by the
red dashed histograms – the blue histograms may extend above the tops of the
panels.
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Figure 65: Distribution of the quoted test statistic in null hypothesis challenge
datasets for Doug and Matt’s solution to Problem 2.
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4 Summary

The solutions to the Banff Challenge 2a problems provided by the participants
spanned a range of different approaches. Most of the hypothesis tests were
based on a ratio of profile likelihoods, with Monte Carlo simulation of the the
distribution of the test statistic. Minor variations between submissions arise
from the choice of binning or unbinned fits, and the strategy used to find a
global minimum among many local minima in the first problem, and in the
parameterization and handling of the distributions of the marks in the second
problem. Alternate approaches involved counting events inside signal windows
while fitting backgrounds in the sidebands, counting fractional events, and using
the Kolmogorov-Smirnov test statistic.

The Look-Elsewhere Effect is an issue in Problem 1 but not in Problem 2,
since the presence of a signal introduces an additional parameter – the location
of the peak E in the test hypothesis which is not present in the null hypothesis.
All participants handled this effect rather well – there are no signs of noticeable
undercoverage in the Type-I error rate measurements. One of the methods of
accounting for the Look-Elsewhere Effect had the effect of producing p values
in excess of unity however.

A typical particle physics experiment has a flip-flopping approach of when
to quote a two-sided interval and when to quote a one-sided upper limit. The
part of the challenge specification asking for two-sided intervals when evidence
was claimed and otherwise not did not allow a unified approach, and also biased
the intervals on the rate parameter upwards, most noticeably in the simulated
datasets drawn from the null hypothesis. Quoting a two-sided interval for the
production rate of a new particle for which evidence is not claimed can be
misconstrued by the broader community, even though doing so would help the
coverage properties of the methods.

It is in Problem 2 that significant undercoverage, that is, a higher-than-
expected Type-I error rate, was seen in several submissions. Participants both
underestimated their Type-I error rates and overestimated their discovery power.
Because the distributions of the marks were not given to the participants, instead
relying on simulated Monte Carlo samples of them, participants either binned
the data or calculated unbinned likelihoods using parameterizations that appear
to fit the distributions of the marks in the simulated Monte Carlo samples. It
could also be that the a priori uncertainty of 100% on the rate of Background 2
causes ambiguities to arise in the approach to follow that is reflected measurably
in the results, particularly since Background 2 looks more like the signal than
Background 1 looks like the signal.
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